TOPICS
Search

Infinite Product


A product involving an infinite number of terms. Such products can converge. In fact, for positive a_n, the product product_(n=1)^(infty)a_n converges to a nonzero number iff sum_(n=1)^(infty)lna_n converges.

Infinite products can be used to define the cosine

 cosx=product_(n=1)^infty[1-(4x^2)/(pi^2(2n-1)^2)],
(1)

gamma function

 Gamma(z)=[ze^(gammaz)product_(r=1)^infty(1+z/r)e^(-z/r)]^(-1),
(2)

sine, and sinc function. They also appear in polygon circumscribing,

 K=product_(n=3)^infty1/(cos(pi/n)).
(3)

An interesting infinite product formula due to Euler which relates pi and the nth prime p_n is

pi=2/(product_(n=1)^(infty)[1+(sin(1/2pip_n))/(p_n)])
(4)
=2/(product_(n=2)^(infty)[1+((-1)^((p_n-1)/2))/(p_n)])
(5)

(Blatner 1997). Knar's formula gives a functional equation for the gamma function Gamma(x) in terms of the infinite product

 Gamma(1+v)=2^(2v)product_(m=1)^infty[pi^(-1/2)Gamma(1/2+2^(-m)v)].
(6)

A regularized product identity is given by

 infty!=product_(k=1)^^^inftyk=sqrt(2pi)
(7)

(Muñoz Garcia and Pérez-Marco 2003, 2008).

Mellin's formula states

 product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x))=(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y)),
(8)

where psi_0(x) is the digamma function and Gamma(x) is the gamma function.

The following class of products

product_(n=2)^(infty)(n^2-1)/(n^2+1)=picschpi
(9)
product_(n=2)^(infty)(n^3-1)/(n^3+1)=2/3
(10)
product_(n=2)^(infty)(n^4-1)/(n^4+1)=-1/2pisinhpicsc[(-1)^(1/4)pi]csc[(-1)^(3/4)pi]
(11)
=(pisinh(pi))/(cosh(sqrt(2)pi)-cos(sqrt(2)pi))
(12)
product_(n=2)^(infty)(n^5-1)/(n^5+1)=(2Gamma(-(-1)^(1/5))Gamma((-1)^(2/5))Gamma(-(-1)^(3/5))Gamma((-1)^(4/5)))/(5Gamma((-1)^(1/5))Gamma(-(-1)^(2/5))Gamma((-1)^(3/5))Gamma(-(-1)^(4/5)))
(13)

(Borwein et al. 2004, pp. 4-6), where Gamma(z) is the gamma function, the first of which is given in Borwein and Corless (1999), can be done analytically. In particular, for r>1,

 product_(n=1; n!=m)^infty(n^r-m^r)/(n^r+m^r)=(-1)^(m+1)(2mm!)/rproduct_(j=1)^(2r-1)[Gamma(-momega_r^j)]^((-1)^(j+1)),
(14)

where omega_k=e^(ipi/k) (Borwein et al. 2004, pp. 6-7). It is not known if (13) is algebraic, although it is known to satisfy no integer polynomial with degree less than 21 and Euclidean norm less than 5×10^(18) (Borwein et al. 2004, p. 7).

Products of the following form can be done analytically,

 product_(k=1)^infty((1+k^(-1))^2)/(1+2k^(-1))=2 
product_(k=1)^infty((1+k^(-1)+k^(-2))^2)/(1+2k^(-1)+3k^(-2)) 
 =(3sqrt(2)cosh^2(1/2pisqrt(3))csch(pisqrt(2)))/pi  
product_(k=1)^infty((1+k^(-1)+k^(-2)+k^(-3))^2)/(1+2k^(-1)+3k^(-2)+4k^(-3))=(sinh^2piproduct_(i=1)^(3)Gamma(x_i))/(pi^2) 
product_(k=1)^infty((1+k^(-1)+k^(-2)+k^(-3)+k^(-4))^2)/(1+2k^(-1)+3k^(-2)+4k^(-3)+5k^(-4))=product_(i=1)^4(Gamma(y_i))/(Gamma^2(z_i)),
(15)

where x_i, y_i, and z_i are the roots of

x^3-5x^2+10x-10=0
(16)
y^4-6y^3+15y^2-20y+15=0
(17)
z^4-5z^3+10z^2-10z+5=0,
(18)

respectively, can also be done analytically. Note that (17) and (18) were unknown to Borwein and Corless (1999). These are special cases of the result that

 product_(k=1)^infty(sum_(i=1)^(p)(a_i)/(k^i))/(sum_(i=0)^(q)(b_i)/(k^i))=(b_q)/(a_p)(product_(i=0)^(q)Gamma(-s_i))/(product_(i=0)^(p)Gamma(-r_i)),
(19)

if a_0=b_0=1 and a_1=b_1, where r_i is the ith root of sum_(j=0)^(p)a_j/k^j and s_i is the ith root of sum_(j=0)^(q)b_j/k^j (P. Abbott, pers. comm., Mar. 30, 2006).

For k>=2,

 product_(n=2)^infty(1-1/(n^k))={1/(kproduct_(j=1)^(k-1)Gamma((-1)^(1+j(1+1/k))))   for k odd; (product_(j=1)^((k/2)-1)sin[pi(-1)^(2j/k)])/(k(pii)^((k/2)-1))   for k even
(20)

(D. W. Cantrell, pers. comm., Apr. 18, 2006). The first few explicit cases are

product_(n=2)^(infty)(1-1/(n^2))=1/2
(21)
product_(n=2)^(infty)(1-1/(n^3))=(cosh(1/2pisqrt(3)))/(3pi)
(22)
=1/(3Gamma((-1)^(1/3))Gamma(-(-1)^(2/3)))
(23)
product_(n=2)^(infty)(1-1/(n^4))=(sinhpi)/(4pi)
(24)
product_(n=2)^(infty)(1-1/(n^5))=1/(5Gamma((-1)^(1/5))Gamma(-(-1)^(2/5))Gamma((-1)^(3/5))Gamma(-(-1)^(4/5)))
(25)
product_(n=2)^(infty)(1-1/(n^6))=(1+cosh(pisqrt(3)))/(12pi^2).
(26)

These are a special case of the general formula

 product_(k=1)^infty(1-(x^n)/(k^n))=-1/(x^n)product_(k=0)^(n-1)1/(Gamma(-e^(2piik/n)x))
(27)

(Prudnikov et al. 1986, p. 754).

Similarly, for k>=2,

 product_(n=1)^infty(1+1/(n^k))={1/(product_(j=1)^(k-1)Gamma[(-1)^(j(1+1/k))])   for k odd; (product_(j=1)^(k/2)sin[pi(-1)^((2j-1)/k)])/((pii)^(k/2))   for k even
(28)

(D. W. Cantrell, pers. comm., Mar. 29, 2006). The first few explicit cases are

product_(n=1)^(infty)(1+1/(n^2))=(sinhpi)/pi
(29)
product_(n=1)^(infty)(1+1/(n^3))=1/picosh(1/2pisqrt(3))
(30)
product_(n=1)^(infty)(1+1/(n^4))=(cosh(pisqrt(2))-cos(pisqrt(2)))/(2pi^2)
(31)
=-(sin[(-1)^(1/4)pi]sin[(-1)^(3/4)pi])/(pi^2)
(32)
product_(n=1)^(infty)(1+1/(n^5))=|Gamma[exp(2/5pii)]Gamma[exp(6/5pii)]|^(-2)
(33)
product_(n=1)^(infty)(1+1/(n^6))=(sinhpi[coshpi-cos(sqrt(3)pi)])/(2pi^3).
(34)

The d-analog expression

 [infty!]_d=product_(n=3)^infty(1-(2^d)/(n^d))
(35)

also has closed form expressions,

product_(n=3)^(infty)(1-4/(n^2))=1/6
(36)
product_(n=3)^(infty)(1-8/(n^3))=(sinh(pisqrt(3)))/(42pisqrt(3))
(37)
product_(n=3)^(infty)(1-(16)/(n^4))=(sinh(2pi))/(120pi)
(38)
product_(n=3)^(infty)(1-(32)/(n^5))=|Gamma[exp(1/5pii)]Gamma[2exp(7/5pii)]|^(-2).
(39)

General expressions for infinite products of this type include

product_(n=1)^(infty)[1-(z/n)^(2N)]=(sin(piz))/(piz^(2N-1))product_(k=1)^(N-1)|Gamma(ze^(2pii(k-N)/(2N)))|^(-2)
(40)
product_(n=1)^(infty)[1+(z/n)^(2N)]=1/(z^(2N))product_(k=1)^(N)|Gamma(ze^(pii[2(k-N)-1]/(2N)))|^(-2)
(41)
product_(n=1)^(infty)[1-(z/n)^(2N+1)]=1/(Gamma(1-z)z^(2N))product_(k=1)^(N)|Gamma(ze^(pii[2(k-N)-1]/(2N+1)))|^(-2)
(42)
product_(n=1)^(infty)[1+(z/n)^(2N+1)]=1/(Gamma(1+z)z^(2N))product_(k=1)^(N)|Gamma(ze^(2pii(k-N-1)/(2N+1)))|^(-2),
(43)

where Gamma(z) is the gamma function and |z| denotes the complex modulus (Kahovec). (40) and (41) can also be rewritten as

product_(n=1)^(infty)[1-(z/n)^(2N)]=(sin(piz))/(pi^3z^2)[(sinh(piz))/(piz)]^(mod(N+1,2))×product_(k=1)^([N/2]-1)cosh^2[pizsin((kpi)/N)]-cos^2[pizcos((kpi)/N)]
(44)
product_(n=1)^(infty)[1+(z/n)^(2N)]=1/(pi^2z^2)[(sinh(piz))/(piz)]^(mod(N,2))×product_(k=1)^(|_N/2_|)cosh^2[pizsin(((2k-1)pi)/(2N))]-cos^2[pizcos(((2k-1)pi)/(2N))],
(45)

where |_x_| is the floor function, [x] is the ceiling function, and mod(a,m) is the modulus of a (mod m) (Kahovec).

Infinite products of the form

product_(k=1)^(infty)(1-1/(n^k))=(n^(-1))_infty
(46)
=n^(1/24)[1/2theta_1^'(0,n^(-1/2))]^(1/3)
(47)

converge for n>1, where (q)_infty is a q-Pochhammer symbol and theta_n(z,q) is a Jacobi theta function. Here, the n=2 case is exactly the constant Q encountered in the analysis of digital tree searching.

Other products include

product_(k=1)^(infty)(1+2/k)^((-1)^(k+1)k)=pi/(2e)
(48)
=0.57786367...
(49)
product_(k=0)^(infty)(1+e^(-(2k+1)pi))=2^(1/4)e^(-pi/24)
(50)
product_(k=3)^(infty)(1-(pi^2)/(2k^2))sec(pi/k)=0.86885742...
(51)

(OEIS A086056 and A247559; Prudnikov et al. 1986, p. 757). Note that Prudnikov et al. (1986, p. 757) also incorrectly give the product

 product_(k=1)^infty(1-e^(-2pik/sqrt(3)))=(e^(-2pi/sqrt(3)))_infty,
(52)

where (q)_infty is a q-Pochhammer symbol, as 3^(1/4)e^(-pi/(6sqrt(3))), which differs from the correct result by 1.8×10^(-5).

The following analogous classes of products can also be done analytically (J. Zúñiga, pers. comm., Nov. 9, 2004), where again theta_n(z,q) is a Jacobi theta function,

product_(k=1)^(infty)(1+1/(n^k))=n^(1/24)theta_4^(-1/2)(0,n^(-1))[1/2theta_1^'(0,n^(-1))]^(1/6)
(53)
product_(k=1)^(infty)((1-n^(-k))/(1+n^(-k)))=product_(k=1)^(infty)tanh(1/2klnn)
(54)
=theta_4(0,n^(-1))
(55)
product_(k=1)^(infty)((1-n^(-2k))/(1+n^(-2k)))^2=product_(k=1)^(infty)tanh^2(klnn)
(56)
=(theta_1^'(0,n^(-1)))/(theta_2(0,n^(-1)))
(57)
product_(k=1)^(infty)((1-n^(-2k+1))/(1+n^(-2k+1)))^2=product_(k=1)^(infty)tanh^2[(k-1/2)lnn]
(58)
=(theta_4(0,n^(-1)))/(theta_3(0,n^(-1)))
(59)
product_(k=1)^(infty)(1-1/(n^(2k-1)))=n^(-1/24)theta_4^(1/2)(0,n^(-1))[2/(theta_1^'(0,n^(-1)))]^(1/6)
(60)
product_(k=1)^(infty)(1+1/(n^(2k-1)))=n^(-1/24)theta_3^(1/2)(0,n^(-1))[2/(theta_1^'(0,n^(-1)))]^(1/6)
(61)
product_(k=1)^(infty)[1+(-1)^(k-1)b/(k+a)]=2^b_2F_1(a+b,b;a+1;-1)
(62)
=(sqrt(pi)Gamma(a+1))/(2^aGamma(1/2(2+b-a))Gamma(1/2(1+b+a))).
(63)

The first of these can be used to express the Fibonacci factorial constant in closed form.

A class of infinite products derived from the Barnes G-function is given by

 product_(n=1)^infty(1+z/n)^ne^(-z+z^2/(2n))=(G(z+1))/((2pi)^(z/2))e^([z(z+1)+gammaz^2]/2),
(64)

where gamma is the Euler-Mascheroni constant. For z=1, 2, 3, and 4, the explicit products are given by

product_(n=1)^(infty)(1+1/n)^ne^(1/(2n)-1)=(e^(1+gamma/2))/(sqrt(2pi))
(65)
product_(n=1)^(infty)(1+2/n)^ne^(4/(2n)-2)=(e^(3+2gamma))/(2pi)
(66)
product_(n=1)^(infty)(1+3/n)^ne^(9/(2n)-3)=(e^(6+9gamma/2))/(sqrt(2)pi^(3/2))
(67)
product_(n=1)^(infty)(1+4/n)^ne^(16/(2n)-4)=(3e^(10+8gamma))/(pi^2).
(68)

The interesting identities

 xproduct_(n=1)^infty((1-x^(2n))^8)/((1-x^(2n-1))^8)=sum_(n=1)^infty2^(3b(n))sigma_3(Od(n))x^n
(69)

(Ewell 1995, 2000), where b(n) is the exponent of the exact power of 2 dividing n, Od(n)=n/2^(b(n)) is the odd part of n, sigma_k(n) is the divisor function of n, and

product_(n=1)^(infty)(1+x^(2n-1))^8=product_(n=1)^(infty)(1-x^(2n-1))^8+16xproduct_(n=1)^(infty)(1+x^(2n))^8
(70)
=1+8x+28x^2+64x^3+134x^4+288x^5+...
(71)

(OEIS A101127; Jacobi 1829; Ford et al. 1994; Ewell 1998, 2000), the latter of which is known as "aequatio identica satis abstrusa" in the string theory physics literature, arise is connection with the tau function.

An unexpected infinite product involving tanx is given by

 |product_(k=0)^infty[tan(2^kx)]^(1/(2^k))|=4sin^2x
(72)

(Dobinski 1876, Agnew and Walker 1947).

A curious identity first noted by Gosper is given by

product_(n=1)^(infty)1/e(1/(3n)+1)^(3n+1/2)=sqrt((Gamma(1/3))/(2pi))(3^(13/24)exp[1+(2pi^2-3psi_1(1/3))/(12pisqrt(3))])/(A^4)
(73)
=1.012378552722912...
(74)

(OEIS A100072), where Gamma(z) is the gamma function, psi_1(z) is the trigamma function, and A is the Glaisher-Kinkelin constant.


See also

Artin's Constant, Barnes G-Function, Cosine, d-Analog, Dedekind Eta Function, Dirichlet Eta Function, Dobiński's Formula, Euler Identity, Euler-Mascheroni Constant, Euler Product, Fibonacci Factorial Constant, Gamma Function, Hadamard Product, Jacobi Triple Product, Knar's Formula, Mellin's Formula, Mertens Theorem, Pentagonal Number Theorem, Polygon Circumscribing, Polygon Inscribing, Power Tower, Prime Products, Q-Function, q-Series, Riemann Zeta Function, Sinc Function, Sine, Stephens' Constant, Wallis Formula

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 75, 1972.Agnew, R. P. and Walker, R. J. "A Trigonometric Infinite Product." Amer. Math. Monthly 54, 206-211, 1947.Arfken, G. "Infinite Products." §5.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 346-351, 1985.Blatner, D. The Joy of Pi. New York: Walker, p. 119, 1997.Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." §1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 4-7, 2004.Borwein, J. M. and Corless, R. M. "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly 106, 899-909, 1999.Dobinski, G. "Product einer unendlichen Factorenreihe." Archiv Math. u. Phys. 59, 98-100, 1876.Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, p. 6, 1981.Ewell, J. A. "Arithmetical Consequences of a Sextuple Product Identity." Rocky Mtn. J. Math. 25, 1287-1293, 1995.Ewell, J. A. "A Note on a Jacobian Identity." Proc. Amer. Math. Soc. 126, 421-423, 1998.Ewell, J. A. "New Representations of Ramanujan's Tau Function." Proc. Amer. Math. Soc. 128, 723-726, 2000.Finch, S. R. "Kepler-Bouwkamp Constant." §6.3 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 428-429, 2003.Ford, D.; McKay, J.; and Norton, S. P. "More on Replicable Functions." Commun. Alg. 22, 5175-5193, 1994.Hansen, E. R. A Table of Series and Products. Englewood Cliffs, NJ: Prentice-Hall, 1975.Jacobi, C. G. J. "E formulis (7.),(8.) sequitur aequatio identica satis abstrusa: (14.) [(1-q)(1-q^3)(1-q^5)..]^8+16q[(1+q^2)(1+q^4)(1+q^6)..]^8=[(1+q)(1+q^3)(1+q^5)..]^8." Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Germany: Regiomonti, Sumtibus fratrum Borntraeger, 1829. Reprinted in Gesammelte Werke, Band. 1. Providence, RI: Amer. Math. Soc., p. 147, 1969.Jeffreys, H. and Jeffreys, B. S. "Infinite Products." §1.14 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 52-53, 1988.Krantz, S. G. "The Concept of an Infinite Product." §8.1.6 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 104-105, 1999.Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is 4pi^2." Preprint IHES/M/03/34. May 2003. http://inc.web.ihes.fr/prepub/PREPRINTS/M03/Resu/resu-M03-34.html.Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is 4pi^2." Commun. Math. Phys. 277, 69-81, 2008.Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. "Infinite Products." §6.2 in Integrals and Series, Vol. 1: Elementary Functions. New York: Gordon & Breach, pp. 753-757, 1986.Ritt, J. F. "Representation of Analytic Functions as Infinite Products." Math. Z. 32, 1-3, 1930.Sloane, N. J. A. Sequences A048651, A086056, A100072, A100220, A100221, A100222, A101127, and A247559 in "The On-Line Encyclopedia of Integer Sequences."Whittaker, E. T. and Watson, G. N. §7.5-7.6 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

Referenced on Wolfram|Alpha

Infinite Product

Cite this as:

Weisstein, Eric W. "Infinite Product." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/InfiniteProduct.html

Subject classifications