This derivation of the Wallis formula from using the Hadamard
product can also be reversed to derive from the Wallis formula without using the Hadamard
product (Sondow 1994).

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 258, 1972.Finch, S. R. "Archimedes'
Constant." §1.4 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 17-28,
2003.Guillera, J. and Sondow, J. "Double Integrals and Infinite
Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent."
16 June 2005. http://arxiv.org/abs/math.NT/0506319.Jeffreys,
H. and Jeffreys, B. S. "Wallis's Formula for ." §15.07 in Methods
of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University
Press, p. 468, 1988.Kenney, J. F. and Keeping, E. S.
Mathematics
of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 63-64,
1951.Sloane, N. J. A. Sequences A052928,
A063196, A065446,
and A075700 in "The On-Line Encyclopedia
of Integer Sequences."Sondow, J. "Analytic Continuation of
Riemann's Zeta Function and Values at Negative Integers via Euler's Transformation
of Series." Proc. Amer. Math. Soc.120, 421-424, 1994.Sondow,
J. "A Faster Product for and a New Integral for ." Amer. Math. Monthly112, 729-734,
2005.Wallis, J. Arithmetica Infinitorum. Oxford, England, 1656.