For
,
 |
(1)
|
Both of these have closed form representation
 |
(2)
|
where
is a q-Pochhammer symbol.
Expanding and taking a series expansion about zero for either side gives
 |
(3)
|
giving 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, ... (OEIS A000009), i.e., the number of partitions of
into distinct parts
.
See also
Euler Formula,
Jacobi Triple Product,
Partition Function Q,
q-Series
Explore with Wolfram|Alpha
References
Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 72,
1935.Franklin, F. "Sur le developpement du produit infini
."
Comptes Rendus Acad. Sci. Paris 92, 448-450, 1881.Hardy,
G. H. §6.2 in Ramanujan:
Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York:
Chelsea, pp. 83-85, 1999.Hardy, G. H. and Wright, E. M.
§19.11 in An
Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon
Press, 1979.MacMahon, P. A. Combinatory
Analysis, Vol. 2. New York: Chelsea, pp. 21-23, 1960.Nagell,
T. Introduction
to Number Theory. New York: Wiley, p. 55, 1951.Sloane,
N. J. A. Sequence A000009/M0281
in "The On-Line Encyclopedia of Integer Sequences."Referenced
on Wolfram|Alpha
Euler Identity
Cite this as:
Weisstein, Eric W. "Euler Identity." From
MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EulerIdentity.html
Subject classifications