TOPICS

q-Pochhammer Symbol

The q-analog of the Pochhammer symbol defined by

 (1)

(Koepf 1998, p. 25). -Pochhammer symbols are frequently called q-series and, for brevity, is often simply written . Note that this contention has the slightly curious side-effect that the argument is not taken literally, so for example means , not (cf. Andrews 1986b).

The -Pochhammer symbol is implemented in the Wolfram Language as QPochhammer[a, q, n], with the special cases and represented as QPochhammer[a, q] and QPochhammer[q], respectively.

Min Max
 Min Max Re Im

Letting gives the special case , sometimes known as "the" Euler function and defined by

 (2) (3)

This function is closely related to the pentagonal number theorem and other related and beautiful sum/product identities. As mentioned above, it is implemented in Mathematica as QPochhammer[q]. As can be seen in the plot above, along the real axis, reaches a maximum value (OEIS A143440) at value (OEIS A143441).

The general -Pochhammer symbol is given by the sum

 (4)

where is a q-binomial coefficient (Koekoek and Swarttouw 1998, p. 11).

It is closely related to the Dedekind eta function,

 (5)

where the half-period ratio and is the square of the nome (Berndt 1994, p. 139). Other representations in terms of special functions include

 (6) (7)

where is a Jacobi theta function (and in the latter case, care must be taken with the definition of the principal value the cube root).

Asymptotic results for -Pochhammer symbols include

 (8) (9) (10)

for (Watson 1936, Gordon and McIntosh 2000).

For ,

 (11)

gives the normal Pochhammer symbol (Koekoek and Swarttouw 1998, p. 7). The -Pochhammer symbols are also called -shifted factorials (Koekoek and Swarttouw 1998, pp. 8-9).

The -Pochhammer symbol satisfies

 (12)
 (13)
 (14)
 (15)
 (16)
 (17)

(here, is a binomial coefficient so ), as well as many other identities, some of which are given by Koekoek and Swarttouw (1998, p. 9).

A generalized -Pochhammer symbol can be defined using the concise notation

 (18)

(Gordon and McIntosh 2000).

The -bracket

 (19)

and -binomial

 (20)

symbols are sometimes also used when discussing -series, where is a -binomial coefficient.

Borwein Conjectures, Dedekind Eta Function, Fine's Equation, Jackson's Identity, Jacobi Identities, Mock Theta Function, Pochhammer Symbol, q-Analog, q-Binomial Coefficient, q-Binomial Theorem, q-Cosine, q-Factorial, Q-Function, q-Gamma Function, q-Hypergeometric Function, q-Multinomial Coefficient, q-Series, q-Series Identities, q-Sine, Ramanujan Psi Sum, Ramanujan Theta Functions, Rogers-Ramanujan Identities

Explore with Wolfram|Alpha

More things to try:

References

Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., 1986a.Andrews, G. E. "The Fifth and Seventh Order Mock Theta Functions." Trans. Amer. Soc. 293, 113-134, 1986b.Andrews, G. E. The Theory of Partitions. Cambridge, England: Cambridge University Press, 1998.Andrews, G. E.; Askey, R.; and Roy, R. Special Functions. Cambridge, England: Cambridge University Press, 1999.Berndt, B. C. "q-Series." Ch. 27 in Ramanujan's Notebooks, Part IV. New York:Springer-Verlag, pp. 261-286, 1994.Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook." Trans. Amer. Math. Soc. 352, 2157-2177, 2000.Bhatnagar, G. "A Multivariable View of One-Variable q-Series." In Special Functions and Differential Equations. Proceedings of the Workshop (WSSF97) held in Madras, January 13-24, 1997) (Ed. K. S. Rao, R. Jagannathan, G. van den Berghe, and J. Van der Jeugt). New Delhi, India: Allied Pub., pp. 60-72, 1998.Gasper, G. "Lecture Notes for an Introductory Minicourse on -Series." 25 Sep 1995. http://arxiv.org/abs/math.CA/9509223.Gasper, G. "Elementary Derivations of Summation and Transformation Formulas for q-Series." In Fields Inst. Comm. 14 (Ed. M. E. H. Ismail et al. ), pp. 55-70, 1997.Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.Gosper, R. W. "Experiments and Discoveries in q-Trigonometry." In Symbolic Computation, Number Theory,Special Functions, Physics and Combinatorics. Proceedings of the Conference Held at the University of Florida, Gainesville, FL, November 11-13, 1999 (Ed. F. G. Garvan and M. E. H. Ismail). Dordrecht, Netherlands: Kluwer, pp. 79-105, 2001.Gordon, B. and McIntosh, R. J. "Some Eighth Order Mock Theta Functions." J. London Math. Soc. 62, 321-335, 2000.Koekoek, R. and Swarttouw, R. F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, p. 7, 1998.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 25 and 30, 1998.Sloane, N. J. A. Sequences A143440 and A143441 in "The On-Line Encyclopedia of Integer Sequences."Watson, G. N. "The Final Problem: An Account of the Mock Theta Functions." J. London Math. Soc. 11, 55-80, 1936.

Referenced on Wolfram|Alpha

q-Pochhammer Symbol

Cite this as:

Weisstein, Eric W. "q-Pochhammer Symbol." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/q-PochhammerSymbol.html