Let and be nonzero integers such that (except when ). Also let be the set of primes for which for some nonnegative integer . Then assuming the generalized Riemann hypothesis, Stephens (1976) showed that the density of relative to the primes is a rational multiple of
Stephens' Constant
See also
Artin's ConstantExplore with Wolfram|Alpha
References
Finch, S. R. "Artin's Constant." §2.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 104-110, 2003.Moree, P. "Approximation of Singular Series and Automata." Submitted to Manuscripta Math. 101, 385-399, 2000.Moree, P. and Stevenhagen, P. "A Two-Variable Artin Conjecture." J. Number Th. 85, 291-304, 2000.Niklasch, G. "Some Number-Theoretical Constants." http://www.gn-50uma.de/alula/essays/Moree/Moree.en.shtml.Sloane, N. J. A. Sequence A065478 in "The On-Line Encyclopedia of Integer Sequences."Stephens, P. J. "Prime Divisor of Second-Order Linear Recurrences, I." J. Number Th. 8, 313-332, 1976.Referenced on Wolfram|Alpha
Stephens' ConstantCite this as:
Weisstein, Eric W. "Stephens' Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StephensConstant.html