The study of the probabilities involved in geometric problems, e.g., the distributions of length, area, volume, etc. for geometric objects under stated conditions.

The following table summarized known results for picking geometric objects from points in or on the boundary of other geometric objects, where is the Robbins constant .

See also Bertrand's Problem ,

Buffon-Laplace Needle Problem ,

Buffon's Needle Problem ,

Circle Inscribing ,

Computational
Geometry ,

Integral Geometry ,

Point
Picking ,

Stochastic Geometry ,

Sylvester's
Four-Point Problem
Explore with Wolfram|Alpha
References Ambartzumian, R. V. (Ed.). Stochastic and Integral Geometry. Dordrecht, Netherlands: Reidel, 1987. Isaac,
R. The
Pleasures of Probability. New York: Springer-Verlag, 1995. Kendall,
M. G. and Moran, P. A. P. Geometrical
Probability. New York: Hafner, 1963. Kendall, W. S.; Barndorff-Nielson,
O.; and van Lieshout, M. C. Current
Trends in Stochastic Geometry: Likelihood and Computation. Boca Raton, FL:
CRC Press, 1998. Klain, D. A. and Rota, G.-C. Introduction
to Geometric Probability. New York: Cambridge University Press, 1997. Santaló,
L. A. Introduction
to Integral Geometry. Paris: Hermann, 1953. Santaló, L. A.
Integral
Geometry and Geometric Probability. Reading, MA: Addison-Wesley, 1976. Solomon,
H. Geometric
Probability. Philadelphia, PA: SIAM, 1978. Stoyan, D.; Kendall,
W. S.; and Mecke, J. Stochastic
Geometry and Its Applications, 2nd ed. New York: Wiley, 1987. Weisstein,
E. W. "Books about Geometric Probability." http://www.ericweisstein.com/encyclopedias/books/GeometricProbability.html . Referenced
on Wolfram|Alpha Geometric Probability
Cite this as:
Weisstein, Eric W. "Geometric Probability."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/GeometricProbability.html

Subject classifications