Search Results for ""
191 - 200 of 2717 for Sequences and seriesSearch Results

Expanding the Riemann zeta function about z=1 gives zeta(z)=1/(z-1)+sum_(n=0)^infty((-1)^n)/(n!)gamma_n(z-1)^n (1) (Havil 2003, p. 118), where the constants ...
There are many formulas of pi of many types. Among others, these include series, products, geometric constructions, limits, special values, and pi iterations. pi is ...
The double factorial of a positive integer n is a generalization of the usual factorial n! defined by n!!={n·(n-2)...5·3·1 n>0 odd; n·(n-2)...6·4·2 n>0 even; 1 n=-1,0. (1) ...
The reciprocal of the arithmetic-geometric mean of 1 and sqrt(2), G = 2/piint_0^11/(sqrt(1-x^4))dx (1) = 2/piint_0^(pi/2)(dtheta)/(sqrt(1+sin^2theta)) (2) = L/pi (3) = ...
The inverse hyperbolic sine sinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is the ...
Let z=re^(itheta)=x+iy be a complex number, then inequality |(zexp(sqrt(1-z^2)))/(1+sqrt(1-z^2))|<=1 (1) holds in the lens-shaped region illustrated above. Written explicitly ...
Calculus II
The prime zeta function P(s)=sum_(p)1/(p^s), (1) where the sum is taken over primes is a generalization of the Riemann zeta function zeta(s)=sum_(k=1)^infty1/(k^s), (2) where ...
Watson (1939) considered the following three triple integrals, I_1 = 1/(pi^3)int_0^piint_0^piint_0^pi(dudvdw)/(1-cosucosvcosw) (1) = (4[K(1/2sqrt(2))]^2)/(pi^2) (2) = ...
A Gaussian quadrature-like formula for numerical estimation of integrals. It uses weighting function W(x)=1 in the interval [-1,1] and forces all the weights to be equal. The ...

...