TOPICS
Search

Inverse Hyperbolic Sine


ArcSinhReal
Min Max
Powered by webMathematica
ArcSinhReImAbs
Min Max
Re
Im Powered by webMathematica

The inverse hyperbolic sine sinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is the multivalued function that is the inverse function of the hyperbolic sine.

The variants Arcsinhz or Arsinhz (Harris and Stocker 1998, p. 263) are sometimes used to refer to explicit principal values of the inverse hyperbolic sine, although this distinction is not always made. Worse yet, the notation arcsinhz is sometimes used for the principal value, with Arcsinhz being used for the multivalued function (Abramowitz and Stegun 1972, p. 87). The notations arcsinhz (Jeffrey 2000, p. 124) and Arshz (Gradshteyn and Ryzhik 2000, p. xxx) are sometimes also used. Note that in the notation sinh^(-1)z, sinhz is the hyperbolic sine and the superscript -1 denotes an inverse function, not the multiplicative inverse.

Its principal value of sinh^(-1)z is implemented in the Wolfram Language as ArcSinh[z] and in the GNU C library as asinh(double x).

InverseHyperbolicSineBranchCut

The inverse hyperbolic sine is a multivalued function and hence requires a branch cut in the complex plane, which the Wolfram Language's convention places at the line segments (-iinfty,-i) and (i,iinfty). This follows from the definition of sinh^(-1)z as

 sinh^(-1)z=ln(z+sqrt(1+z^2)).
(1)

The inverse hyperbolic sine is given in terms of the inverse sine by

 sinh^(-1)z=1/isin^(-1)(iz)
(2)

(Gradshteyn and Ryzhik 2000, p. xxx).

The derivative of the inverse hyperbolic sine is

 d/(dz)sinh^(-1)z=1/(sqrt(1+z^2)),
(3)

and the indefinite integral is

 intsinh^(-1)zdz=zsinh^(-1)z-sqrt(1+z^2)+C.
(4)

It has a Maclaurin series

sinh^(-1)x=sum_(k=1)^(infty)(P_(k-1)(0))/kx^k
(5)
=sum_(n=0)^(infty)((-1)^n(2n-1)!!)/((2n+1)(2n)!!)x^(2n+1)
(6)
=x-1/6x^3+3/(40)x^5-5/(112)x^7+(35)/(1152)x^9+...
(7)

(OEIS A055786 and A002595), where P_n(x) is a Legendre polynomial. It has a Taylor series about infinity of

sinh^(-1)x=-ln(x^(-1))+ln2+sum_(n=1)^(infty)((-1)^(n-1)(2n-1)!!)/(2n(2n)!!)x^(-2n)
(8)
=-ln(x^(-1))+ln2+1/4x^(-2)-3/(32)x^(-4)+5/(96)x^(-6)-...
(9)

(OEIS A052468 and A052469).


See also

Hyperbolic Sine, Inverse Hyperbolic Functions

Related Wolfram sites

http://functions.wolfram.com/ElementaryFunctions/ArcSinh/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.GNU C Library. "Mathematics: Inverse Trigonometric Functions." http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_19.html#SEC391.Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. xxx, 2000.Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, 1998.Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 124-128, 2000.Sloane, N. J. A. Sequences A002595/M4233, A052468, A052469, and A055786 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.Zwillinger, D. (Ed.). "Inverse Hyperbolic Functions." §6.8 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 481-483, 1995.

Referenced on Wolfram|Alpha

Inverse Hyperbolic Sine

Cite this as:

Weisstein, Eric W. "Inverse Hyperbolic Sine." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/InverseHyperbolicSine.html

Subject classifications