TOPICS
Search

Chebyshev Quadrature


A Gaussian quadrature-like formula for numerical estimation of integrals. It uses weighting function W(x)=1 in the interval [-1,1] and forces all the weights to be equal. The general formula is

 int_(-1)^1f(x)dx=2/nsum_(i=1)^nf(x_i),
(1)

where the abscissas x_i are found by taking terms up to y^n in the Maclaurin series of

 s_n(y)=exp{1/2n[-2+ln(1-y)(1-1/y)+ln(1+y)(1+1/y)]},
(2)

and then defining

 G_n(x)=x^ns_n(1/x).
(3)

The roots of G_n(x) then give the abscissas. The first few values are

G_0(x)=1
(4)
G_1(x)=x
(5)
G_2(x)=1/3(3x^2-1)
(6)
G_3(x)=1/2(2x^3-x)
(7)
G_4(x)=1/(45)(45x^4-30x^2+1)
(8)
G_5(x)=1/(72)(72x^5-60x^3+7x)
(9)
G_6(x)=1/(105)(105x^6-105x^4+21x^2-1)
(10)
G_7(x)=1/(6480)(6480x^7-7560x^5+2142x^3-149x)
(11)
G_8(x)=1/(42525)(42525x^8-56700x^6+20790x^4-2220x^2-43)
(12)
G_9(x)=1/(22400)(22400x^9-33600x^7+15120x^5-2280x^3+53x)
(13)

(OEIS A002680 and A101270).

Because the roots are all real for n<=7 and n=9 only (Hildebrand 1956), these are the only permissible orders for Chebyshev quadrature. The error term is

 E_n={c_n(f^((n+1))(xi))/((n+1)!)   n odd; c_n(f^((n+2))(xi))/((n+2)!)   n even,
(14)

where

 c_n={int_(-1)^1xG_n(x)dx   n odd; int_(-1)^1x^2G_n(x)dx   n even.
(15)

The first few values of c_n are 2/3, 8/45, 1/15, 32/945, 13/756, and 16/1575 (Hildebrand 1956). Beyer (1987) gives abscissas up to n=7 and Hildebrand (1956) up to n=9.

nx_i
2+/-0.57735
30
+/-0.707107
4+/-0.187592
+/-0.794654
50
+/-0.374541
+/-0.832497
6+/-0.266635
+/-0.422519
+/-0.866247
70
+/-0.323912
+/-0.529657
+/-0.883862
90
+/-0.167906
+/-0.528762
+/-0.601019
+/-0.911589

The abscissas and weights can be computed analytically for small n.

nx_i
2+/-1/3sqrt(3)
30
+/-1/2sqrt(2)
4+/-sqrt((sqrt(5)-2)/(3sqrt(5)))
+/-sqrt((sqrt(5)+2)/(3sqrt(5)))
50
+/-1/2sqrt((5-sqrt(11))/3)
+/-1/2sqrt((5+sqrt(11))/3)

See also

Gaussian Quadrature, Lobatto Quadrature

Explore with Wolfram|Alpha

References

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 466, 1987.Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 345-351, 1956.Salzer, H. E. "Tables for Facilitating the Use of Chebyshev's Quadrature Formula." J. Math. Phys. 26, 191-194, 1947.Sloane, N. J. A. Sequences A002680/M2261 and A101270 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Chebyshev Quadrature

Cite this as:

Weisstein, Eric W. "Chebyshev Quadrature." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ChebyshevQuadrature.html

Subject classifications