The Bible contains two references (I Kings 7:23 and Chronicles 4:2) which give a value of 3 for
(Wells 1986, p. 48). It should
be mentioned, however, that both instances refer to a value obtained from physical
measurements and, as such, are probably well within the bounds of experimental uncertainty.
I Kings 7:23 states, "Also he made a molten sea of ten cubits from brim to brim,
round in compass, and five cubits in height thereof; and a line thirty cubits did
compass it round about." This implies
.
The Babylonians gave an estimate of
as
, while
the Egyptians gave
in the Rhind papyrus
and 22/7 elsewhere. The Chinese geometers, however, did best of all, rigorously deriving
to 6 decimal places.
On Sept. 15, 2005, Google offered exactly 14159265 shares of Class A stock, which is the same as the first eight digits or
after the decimal
point (Markoff 2005).
Ramanujan (1913-1914) and Olds (1963) give geometric constructions for 355/113. Gardner (1966, pp. 92-93) gives a geometric construction for
.
Dixon (1991) gives constructions for
and
. Constructions
for approximations of
are approximations to circle
squaring (which is itself impossible).
SEE ALSO: Almost Integer,
Archimedes Algorithm,
BBP Formula,
Brent-Salamin
Formula,
Buffon-Laplace Needle Problem,
Buffon's Needle Problem,
Circle,
Circumference,
Diameter,
Dirichlet Beta Function,
Dirichlet
Eta Function,
Dirichlet Lambda Function,
e,
Euler-Mascheroni
Constant,
Maclaurin Series,
Machin's
Formula,
Machin-Like Formulas,
Normal
Distribution,
Pi Approximations,
Pi
Continued Fraction,
Pi Digits,
Pi
Formulas,
Pi Wordplay,
Radius,
Relatively Prime,
Riemann
Zeta Function,
Sphere,
Trigonometry
RELATED WOLFRAM SITES: http://functions.wolfram.com/Constants/Pi/
REFERENCES:
Almkvist, G. and Berndt, B. "Gauss, Landen, Ramanujan, and Arithmetic-Geometric Mean, Ellipses,
, and the Ladies Diary." Amer.
Math. Monthly 95, 585-608, 1988.
Almkvist, G. "Many Correct Digits of
, Revisited."
Amer. Math. Monthly 104, 351-353, 1997.
Arndt, J. "Cryptic Pi Related Formulas." http://www.jjj.de/hfloat/pise.dvi.
Arndt, J. and Haenel, C. Pi:
Algorithmen, Computer, Arithmetik. Berlin: Springer-Verlag, 1998.
Arndt, J. and Haenel, C. Pi--Unleashed,
2nd ed. Berlin: Springer-Verlag, 2001.
Assmus, E. F. "Pi." Amer. Math. Monthly 92, 213-214,
1985.
Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving
,
, and Euler's Constant." Math.
Comput. 50, 275-281, 1988a.
Bailey, D. H. "The Computation of
to
Decimal
Digit using Borwein's' Quartically Convergent Algorithm." Math. Comput. 50,
283-296, 1988b.
Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913,
1997.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical
Recreations and Essays, 13th ed. New York: Dover, p. 55 and 274, 1987.
Beck, G. and Trott, M. "Calculating Pi from Antiquity to
Modern Times." http://library.wolfram.com/infocenter/Demos/107/.
Beckmann, P. A
History of Pi, 3rd ed. New York: Dorset Press, 1989.
Beeler, M. et al. Item 140 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239,
p. 69, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/pi.html#item140.
Berggren, L.; Borwein, J.; and Borwein, P. Pi:
A Source Book. New York: Springer-Verlag, 1997.
Bellard, F. "Fabrice Bellard's Pi Page." http://www-stud.enst.fr/~bellard/pi/.
Berndt, B. C. Ramanujan's
Notebooks, Part IV. New York: Springer-Verlag, 1994.
Blatner, D. The
Joy of Pi. New York: Walker, 1997.
Blatner, D. "The Joy of Pi." http://www.joyofpi.com/.
Borwein, J. M. "Ramanujan Type Series." http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/omlink9/html/node1.html.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A
K Peters, 2003.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters,
2004.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.
New York: Wiley, 1987a.
Borwein, J. M. and Borwein, P. B. "Ramanujan's Rational and Algebraic Series for
." Indian J. Math. 51, 147-160,
1987b.
Borwein, J. M. and Borwein, P. B. "More Ramanujan-Type Series for
." In Ramanujan
Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign,
June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and
R. A. Rankin). New York: Academic Press, pp. 359-374, 1988.
Borwein, J. M. and Borwein, P. B. "Class Number Three Ramanujan Type Series for
." J. Comput. Appl. Math. 46,
281-290, 1993.
Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits
of Pi." Amer. Math. Monthly 96, 201-219, 1989.
Borwein, P. B. "Pi and Other Constants." http://www.cecm.sfu.ca/~pborwein/PISTUFF/Apistuff.html.
Calvet, C. "First Communication. A) Secrets of Pi: Strange Things in a Mathematical
Train." http://www.terravista.pt/guincho/1219/1a_index_uk.html.
Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61,
67-98, 1988a.
Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag. 61,
148-163, 1988b.
Chan, J. "As Easy as Pi." Math Horizons, pp. 18-19, Winter
1993.
Choong, K. Y.; Daykin, D. E.; and Rathbone, C. R. "Rational Approximations to
." Math. Comput. 25, 387-392, 1971.
Chudnovsky, D. V. and Chudnovsky, G. V. Padé and Rational Approximations to Systems of Functions and Their Arithmetic Applications. Berlin: Springer-Verlag,
1984.
Chudnovsky, D. V. and Chudnovsky, G. V. "Approximations and Complex Multiplication According to Ramanujan." In Ramanujan
Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign,
June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and
R. A. Rankin). Boston, MA: Academic Press, pp. 375-472, 1987.
Conway, J. H. and Guy, R. K. "The Number
." In The
Book of Numbers. New York: Springer-Verlag, pp. 237-239, 1996.
David, Y. "On a Sequence Generated by a Sieving Process." Riveon Lematematika 11,
26-31, 1957.
Dixon, R. "The Story of Pi (
)." §4.3 in Mathographics.
New York: Dover, pp. 44-49 and 98-101, 1991.
Dunham, W. "A Gem from Isaac Newton." Ch. 7 in Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 106-112
and 155-183, 1990.
Exploratorium. "
Page." http://www.exploratorium.edu/learning_studio/pi/.
Finch, S. R. "Archimedes' Constant." §1.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 17-28,
2003.
Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants."
Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.
Gardner, M. "Memorizing Numbers." Ch. 11 in The Scientific American Book of Mathematical Puzzles and Diversions. New York:
Simon and Schuster, p. 103, 1959.
Gardner, M. "The Transcendental Number Pi." Ch. 8 in Martin Gardner's New Mathematical Diversions from Scientific American. New York:
Simon and Schuster, pp. 91-102, 1966.
Gosper, R. W. Table of Simple Continued Fraction for
and the Derived
Decimal Approximation. Stanford, CA: Artificial Intelligence Laboratory, Stanford
University, Oct. 1975. Reviewed in Math. Comput. 31, 1044, 1977.
Gourdon, X. and Sebah, P. "The Constant
." http://numbers.computation.free.fr/Constants/Pi/pi.html.
Hardy, G. H. A Course of Pure Mathematics, 10th ed. Cambridge, England: Cambridge University
Press, 1952.
Hata, M. "Improvement in the Irrationality Measures of
and
." Proc.
Japan. Acad. Ser. A Math. Sci. 68, 283-286, 1992.
Havermann, H. "
Terms of the Continued Fraction
Expansion of Pi." http://odo.ca/~haha/j/seq/cfpi/.
Hermite, C. "Sur quelques approximations algébriques." J. reine angew. Math. 76, 342-344, 1873. Reprinted in Oeuvres complètes,
Tome III. Paris: Hermann, pp. 146-149, 1912.
Hobson, E. W. Squaring
the Circle. New York: Chelsea, 1988.
Klein, F. Famous
Problems. New York: Chelsea, 1955.
Knopp, K. §32, 136, and 138 in Theory
and Application of Infinite Series. New York: Dover, p. 238, 1990.
Königsberger, K. Analysis
1. Berlin: Springer-Verlag, 1990.
Laczkovich, M. "On Lambert's Proof of the Irrationality of
." Amer.
Math. Monthly 104, 439-443, 1997.
Lambert, J. H. "Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques." Mémoires
de l'Academie des sciences de Berlin 17, 265-322, 1761.
Le Lionnais, F. Les
nombres remarquables. Paris: Hermann, pp. 22 and 50, 1983.
Legendre, A. M. Eléments de géométrie. Paris, France:
Didot, 1794.
Lindemann, F. "Über die Zahl
." Math.
Ann. 20, 213-225, 1882.
Lopez, A. "Indiana Bill Sets the Value of
to 3." http://db.uwaterloo.ca/~alopez-o/math-faq/node45.html.
MacTutor Archive. "Pi Through the Ages." http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.html.
Mahler, K. "On the Approximation of
." Nederl.
Akad. Wetensch. Proc. Ser. A. 56/Indagationes Math. 15,
30-42, 1953.
Markoff, J. "14,159,265 New Slices of Rich Technology." The New York
Times. Aug. 19, 2005.
MathPages. "Rounding Up to Pi." http://www.mathpages.com/home/kmath001.htm.
Nagell, T. "Irrationality of the numbers
and
." §13
in Introduction
to Number Theory. New York: Wiley, pp. 38-40, 1951.
Niven, I. "A Simple Proof that
is Irrational."
Bull. Amer. Math. Soc. 53, 509, 1947.
Niven, I. M. Irrational
Numbers. New York: Wiley, 1956.
Ogilvy, C. S. "Pi and Pi-Makers." Ch. 10 in Excursions
in Mathematics. New York: Dover, pp. 108-120, 1994.
Olds, C. D. Continued
Fractions. New York: Random House, pp. 59-60, 1963.
Pappas, T. "Probability and
." The
Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 18-19,
1989.
Peterson, I. Islands of Truth: A Mathematical Mystery Cruise. New York: W. H. Freeman, pp. 178-186,
1990.
Pickover, C. A. Keys
to Infinity. New York: Wiley, p. 62, 1995.
Plouffe, S. "Table of Current Records for the Computation of Constants."
http://pi.lacim.uqam.ca/eng/records_en.html.
Plouffe, S. "1 Billion
Digits of Pi." http://pi.lacim.uqam.ca/eng/
Plouffe, S. "A Few Approximations of Pi." http://pi.lacim.uqam.ca/eng/approximations_en.html.
Plouffe, S. "PiHex: A Distributed Effort to Calculate Pi." http://www.cecm.sfu.ca/projects/pihex/.
Plouffe, S. "The
Page." http://www.cecm.sfu.ca/pi/.
Plouffe, S. "Table of Computation of Pi from 2000 BC to Now." http://oldweb.cecm.sfu.ca/projects/ISC/Pihistory.html.
Preston, R. "Mountains of Pi." New Yorker 68, 36-67, Mar.
2, 1992. http://www.lacim.uqam.ca/~plouffe/Chudnovsky.html.
Project Mathematics. "The Story of Pi." Videotape. http://www.projectmathematics.com/storypi.htm.
Rabinowitz, S. and Wagon, S. "A Spigot Algorithm for the Digits of
." Amer.
Math. Monthly 102, 195-203, 1995.
Ramanujan, S. "Modular Equations and Approximations to
." Quart.
J. Pure. Appl. Math. 45, 350-372, 1913-1914.
Rivera, C. "Problems & Puzzles: Puzzle 050-The Best Approximation to Pi
with Primes." http://www.primepuzzles.net/puzzles/puzz_050.htm.
Rudio, F. "Archimedes, Huygens, Lambert, Legendre." In Vier Abhandlungen
über die Kreismessung. Leipzig, Germany, 1892.
Sagan, C. Contact.
Pocket Books, 1997.
Schröder, E. M. "Zur Irrationalität von
und
." Mitt.
Math. Ges. Hamburg 13, 249, 1993.
Shanks, D. "Dihedral Quartic Approximations and Series for
." J. Number.
Th. 14, 397-423, 1982.
Shanks, D. Solved
and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993.
Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem.
New York: Walker, pp. 17-18, 1997.
Sloane, N. J. A. Sequences A000796/M2218, A001203/M2646, A001901,
A002485/M3097, A002486/M4456,
A006784, A007509/M2061,
A025547, A032510,
A032523 A033089,
A033090, A036903,
and A046126 in in "The On-Line Encyclopedia
of Integer Sequences."
Smith, D. E. "The History and Transcendence of
." Ch. 9
in Monographs
on Topics of Modern Mathematics Relevant to the Elementary Field (Ed. J. W. A.
Young). New York: Dover, pp. 388-416, 1955.
Stevens, J. "Zur Irrationalität von
." Mitt.
Math. Ges. Hamburg 18, 151-158, 1999.
Stølum, H.-H. "River Meandering as a Self-Organization Process."
Science 271, 1710-1713, 1996.
Stoneham, R. "A General Arithmetic Construction of Transcendental Non-Liouville Normal Numbers from Rational Functions." Acta Arith. 16, 239-253,
1970.
Stoschek, E. "Modul 33: Algames with Numbers" http://marvin.sn.schule.de/~inftreff/modul33/task33.htm.
Struik, D. A Source Book in Mathematics, 1200-1800. Cambridge, MA: Harvard University
Press, 1969.
Vardi, I. Computational
Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 159, 1991.
Viète, F. Uriorum de rebus mathematicis responsorum, liber VIII, 1593.
Wagon, S. "Is
Normal?" Math. Intel. 7,
65-67, 1985.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England:
Penguin Books, pp. 48-55 and 76, 1986.
Whitcomb, C. "Notes on Pi (
)." http://witcombe.sbc.edu/earthmysteries/EMPi.html.
Woon, S. C. "Problem 1441." Math. Mag. 68, 72-73, 1995.
Referenced on Wolfram|Alpha:
Pi
CITE THIS AS:
Weisstein, Eric W. "Pi." From MathWorld--A
Wolfram Web Resource. http://mathworld.wolfram.com/Pi.html