Maclaurin Series

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld Classroom Contribute to this entry

A Maclaurin series is a Taylor series expansion of a function about 0,

 f(x)=f(0)+f^'(0)x+(f^('')(0))/(2!)x^2+(f^((3))(0))/(3!)x^3+...+(f^((n))(0))/(n!)x^n+....
(1)

Maclaurin series are named after the Scottish mathematician Colin Maclaurin.

The Maclaurin series of a function f(x) up to order n may be found using Series[f, {x, 0, n}]. The nth term of a Maclaurin series of a function f can be computed in the Wolfram Language using SeriesCoefficient[f, {x, 0, n}] and is given by the inverse Z-transform

 a_n=Z^(-1)[1/x](n).
(2)

Maclaurin series are a type of series expansion in which all terms are nonnegative integer powers of the variable. Other more general types of series include the Laurent series and the Puiseux series.

Maclaurin series for common functions include

1/(1-x)=1+x+x^2+x^3+x^4+x^5+...
(3)
  for -1<x<1
(4)
cn(x,k)=1-1/2x^2+1/(24)(1+4k^2)x^4+...
(5)
cosx=1-1/2x^2+1/(24)x^4-1/(720)x^6+...
(6)
  for -infty<x<infty
(7)
cos^(-1)x=1/2pi-x-1/6x^3-3/(40)x^5-5/(112)x^7-...
(8)
  for -1<x<1
(9)
coshx=1+1/2x^2+1/(24)x^4+1/(720)x^6+1/(40,320)x^8+...
(10)
cot^(-1)x=1/2pi-x+1/3x^3-1/5x^5+1/7x^7-1/9x^9+...
(11)
dn(x,k)=1-1/2k^2x^2+1/(24)k^2(4+k^2)x^4+...
(12)
erf(x)=1/(sqrt(pi))(2x-2/3x^3+1/5x^5-1/(21)x^7+...)
(13)
e^x=1+x+1/2x^2+1/6x^3+1/(24)x^4+...
(14)
  for -infty<x<infty
(15)
_2F_1(alpha,beta;gamma;x)=1+(alphabeta)/(1!gamma)x+(alpha(alpha+1)beta(beta+1))/(2!gamma(gamma+1))x^2+...
(16)
ln(1+x)=x-1/2x^2+1/3x^3-1/4x^4+...
(17)
  for -1<x<=1
(18)
ln((1+x)/(1-x))=2x+2/3x^3+2/5x^5+2/7x^7+...
(19)
  for -1<x<1
(20)
secx=1+1/2x^2+5/(24)x^4+(61)/(720)x^6+(277)/(8064)x^8+...
(21)
sechx=1-1/2x^2+5/(24)x^4-(61)/(720)x^6+(277)/(8064)x^8+...
(22)
sinx=x-1/6x^3+1/(120)x^5-1/(5040)x^7+...
(23)
  for -infty<x<infty
(24)
sin^(-1)x=x+1/6x^3+3/(40)x^5+5/(112)x^7+(35)/(1152)x^9+...
(25)
sinhx=x+1/6x^3+1/(120)x^5+1/(5040)x^7+1/(362880)x^9+...
(26)
sinh^(-1)x=x-1/6x^3+3/(40)x^5-5/(112)x^7+(35)/(1152)x^9-...
(27)
sn(x,k)=x-1/6(1+k^2)x^3+1/(120)(1+14k^2+k^4)x^5+...
(28)
tanx=x+1/3x^3+2/(15)x^5+(17)/(315)x^7+(62)/(2835)x^9+...
(29)
tan^(-1)x=x-1/3x^3+1/5x^5-1/7x^7+...
(30)
  for -1<x<1
(31)
tanhx=x-1/3x^3+2/(15)x^5-(17)/(315)x^7+(62)/(2835)x^9+...
(32)
tanh^(-1)x=x+1/3x^3+1/5x^5+1/7x^7+1/9x^9+....
(33)

The explicit forms for some of these are

1/(1-x)=sum_(n=0)^(infty)x^n
(34)
cosx=sum_(n=0)^(infty)((-1)^n)/((2n)!)x^(2n)
(35)
cos^(-1)x=pi/2-sum_(n=0)^(infty)(Gamma(n+1/2))/(sqrt(pi)(2n+1)n!)x^(2n+1)
(36)
coshx=sum_(n=0)^(infty)1/((2n)!)x^(2n)
(37)
cot^(-1)x=pi/2-sum_(n=0)^(infty)((-1)^n)/(2n+1)x^(2n+1)
(38)
e^x=sum_(n=0)^(infty)1/(n!)x^n
(39)
erf(x)=sum_(n=0)^(infty)(2(-1)^n)/(sqrt(pi)(2n+1)n!)x^(2n+1)
(40)
_2F_1(alpha,beta;gamma,x)=sum_(n=0)^(infty)((alpha)_n(beta)_n)/((gamma)_n)(x^n)/(n!)
(41)
ln(1+x)=sum_(n=1)^(infty)((-1)^(n+1))/nx^n
(42)
ln((1+x)/(1-x))=sum_(n=1)^(infty)2/((2n-1))x^(2n-1)
(43)
secx=sum_(n=0)^(infty)((-1)^nE_(2n))/((2n)!)x^(2n)
(44)
sechx=sum_(n=0)^(infty)(E_(2n))/((2n)!)x^(2n)
(45)
sinx=sum_(n=0)^(infty)((-1)^n)/((2n+1)!)x^(2n+1)
(46)
sin^(-1)x=sum_(n=0)^(infty)(Gamma(n+1/2))/(sqrt(pi)(2n+1)n!)x^(2n+1)
(47)
sinhx=sum_(n=0)^(infty)1/((2n+1)!)x^(2n+1)
(48)
sinh^(-1)x=sum_(n=0)^(infty)(P_(2n)(0))/(2n+1)x^(2n+1)
(49)
tanx=sum_(n=0)^(infty)((-1)^n2^(2n+2)(2^(2n+2)-1)B_(2n+2))/((2n+2)!)x^(2n+1)
(50)
tan^(-1)x=sum_(n=1)^(infty)((-1)^(n+1))/(2n-1)x^(2n-1)
(51)
tanhx=sum_(n=1)^(infty)(2^(2n)(2^(2n)-1)B_(2n))/((2n)!)x^(2n-1)
(52)
tanh^(-1)x=sum_(n=1)^(infty)1/(2n-1)x^(2n-1),
(53)

where Gamma(x) is a gamma function, B_n is a Bernoulli number, E_n is an Euler number and P_n(x) is a Legendre polynomial.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.