Search Results for ""
31 - 40 of 3983 for Log Gamma FunctionSearch Results
A special function mostly commonly denoted psi_n(z), psi^((n))(z), or F_n(z-1) which is given by the (n+1)st derivative of the logarithm of the gamma function Gamma(z) (or, ...
There are two functions commonly denoted mu, each of which is defined in terms of integrals. Another unrelated mathematical function represented using the Greek letter mu is ...
nu(x) = int_0^infty(x^tdt)/(Gamma(t+1)) (1) nu(x,alpha) = int_0^infty(x^(alpha+t)dt)/(Gamma(alpha+t+1)), (2) where Gamma(z) is the gamma function (Erdélyi et al. 1981, p. ...
A special function is a function (usually named after an early investigator of its properties) having a particular use in mathematical physics or some other branch of ...
The xi-function is the function xi(z) = 1/2z(z-1)(Gamma(1/2z))/(pi^(z/2))zeta(z) (1) = ((z-1)Gamma(1/2z+1)zeta(z))/(sqrt(pi^z)), (2) where zeta(z) is the Riemann zeta ...
The beta function B(p,q) is the name used by Legendre and Whittaker and Watson (1990) for the beta integral (also called the Eulerian integral of the first kind). It is ...
L_nu(z) = (1/2z)^(nu+1)sum_(k=0)^(infty)((1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2)) (1) = (2(1/2z)^nu)/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)sinh(zcostheta)sin^(2nu)thetadtheta, ...
Ein(z) = int_0^z((1-e^(-t))dt)/t (1) = E_1(z)+lnz+gamma, (2) where gamma is the Euler-Mascheroni constant and E_1 is the En-function with n=1.
The Barnes G-function is an analytic continuation of the G-function defined in the construction of the Glaisher-Kinkelin constant G(n)=([Gamma(n)]^(n-1))/(H(n-1)) (1) for ...
The Dirichlet beta function is defined by the sum beta(x) = sum_(n=0)^(infty)(-1)^n(2n+1)^(-x) (1) = 2^(-x)Phi(-1,x,1/2), (2) where Phi(z,s,a) is the Lerch transcendent. The ...
...
View search results from all Wolfram sites (424754 matches)

