TOPICS
Search

Modified Struve Function


StruveL
L_nu(z)=(1/2z)^(nu+1)sum_(k=0)^(infty)((1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2))
(1)
=(2(1/2z)^nu)/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)sinh(zcostheta)sin^(2nu)thetadtheta,
(2)

where Gamma(z) is the gamma function. L_nu(z) is related to the ordinary Struve function H_n(z) by

 L_n(z)=-ie^(-npii/2)H_n(iz)
(3)

(Abramowitz and Stegun 1972, p. 498).

The Struve function L_nu(z) is implemented in the Wolfram Language as StruveL[n, z].

StruveLReIm
StruveLContours

The plots above show L_0(z) in the complex plane.


See also

Anger Function, Struve Function, Weber Functions

Related Wolfram sites

http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/

Explore with Wolfram|Alpha

References

Abramowitz, M. "Tables of Integrals of Struve Functions." J. Math. Phys. 29, 49-51, 1950.Abramowitz, M. and Stegun, I. A. (Eds.). "Modified Struve Function L_nu(x)." §12.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 498, 1972.Apelblat, A. "Derivatives and Integrals with Respect to the Order of the Struve Functions H_nu(x) and L_nu(x)." J. Math. Anal. Appl. 137, 17-36, 1999.Cook, R. K. "Some Properties of Struve Functions." J. Washington Acad. Sci. 47, 365-368, 1957.Horton, C. W. "On the Extension of Some Lommel Integrals to Struve Functions with an Application to Acoustic Radiation." J. Math. Phys. 29, 31-37, 1950.Horton, C. W. "A Short Table of Struve Functions and of Some Integrals Involving Bessel and Struve Functions." J. Math. Phys. 29, 56-58, 1950.Mathematical Tables Project. "Table of the Struve Functions L_nu(z) and H_nu(z)." J. Math. Phys. 25, 252-259, 1946.Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Struve Functions H_nu(x) and L_nu(x)." §1.4 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, pp. 24-27, 1990.

Referenced on Wolfram|Alpha

Modified Struve Function

Cite this as:

Weisstein, Eric W. "Modified Struve Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ModifiedStruveFunction.html

Subject classifications