Nu Function


where Gamma(z) is the gamma function (Erdélyi et al. 1981, p. 217; Prudnikov et al. 1990, p. 799; Gradshteyn and Ryzhik 2000, p. 1109).

The notation nu(n) is also sometimes used to denote the divisor function d(n)=sigma_0(n) giving the number of divisors or the number of distinct prime factors omega(n) of a positive integer n.

See also

Lambda Function, Mu Function

Explore with Wolfram|Alpha


Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. "The Function nu(x) and Related Functions." §18.3 in Higher Transcendental Functions, Vol. 3. New York: Krieger, pp. 217-224, 1981.Gradshteyn, I. S. and Ryzhik, I. M. "The Functions nu(x), nu(x,a), mu(x,beta), mu(x,beta,alpha), lambda(x,y)." §9.64 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1109, 2000.Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, 1990.

Referenced on Wolfram|Alpha

Nu Function

Cite this as:

Weisstein, Eric W. "Nu Function." From MathWorld--A Wolfram Web Resource.

Subject classifications