TOPICS
Search

Polygamma Function


Polygamma

A special function mostly commonly denoted psi_n(z), psi^((n))(z), or F_n(z-1) which is given by the (n+1)st derivative of the logarithm of the gamma function Gamma(z) (or, depending on the definition, of the factorial z!). This is equivalent to the nth normal derivative of the logarithmic derivative of Gamma(z) (or z!) and, in the former case, to the nth normal derivative of the digamma function psi_0(z). Because of this ambiguity in definition, two different notations are sometimes (but not always) used, namely

psi_n(z)=(d^(n+1))/(dz^(n+1))ln[Gamma(z)]
(1)
=(d^n)/(dz^n)(Gamma^'(z))/(Gamma(z))
(2)
=(d^n)/(dz^n)psi_0(z),
(3)

which, for n>0 can be written as

psi_n(z)=(-1)^(n+1)n!sum_(k=0)^(infty)1/((z+k)^(n+1))
(4)
=(-1)^(n+1)n!zeta(n+1,z),
(5)

where zeta(a,z) is the Hurwitz zeta function.

The alternate notation

 F_n(z)=(d^(n+1))/(dz^(n+1))lnz!
(6)

is sometimes used, with the two notations connected by

 psi_n(z)=F_n(z-1).
(7)

Unfortunately, Morse and Feshbach (1953) adopt a notation no longer in standard use in which Morse and Feshbach's "psi_n(z)" is equal to psi_(n-1)(z) in the usual notation. Also note that the function psi_0(z) is equivalent to the digamma function Psi(z) and psi_1(z) is sometimes known as the trigamma function.

psi_n(z) is implemented in the Wolfram Language as PolyGamma[n, z] for positive integer n. In fact, PolyGamma[nu, z] is supported for all complex nu (Grossman 1976; Espinosa and Moll 2004).

The polygamma function obeys the recurrence relation

 psi_n(z+1)=psi_n(z)+(-1)^nn!z^(-n-1),
(8)

the reflection formula

 psi_n(1-z)+(-1)^(n+1)psi_n(z)=(-1)^npi(d^n)/(dz^n)cot(piz),
(9)

and the multiplication formula,

 psi_n(mz)=delta_(n0)lnm+1/(m^(n+1))sum_(k=0)^(m-1)psi_n(z+k/m),
(10)

where delta_(mn) is the Kronecker delta.

The polygamma function is related to the Riemann zeta function zeta(s) and the generalized harmonic numbers H_(z-1)^((n+1)) by

 psi_n(z)=(-1)^(n+1)n![zeta(n+1)-H_(z-1)^((n+1))]
(11)

for n=1, 2, ..., and in terms of the Hurwitz zeta function zeta(s,a) as

 psi_n(z)=(-1)^(n+1)n!zeta(n+1,z).
(12)

The Euler-Mascheroni constant is a special value of the digamma function psi_0(x), with

gamma=-Gamma^'(1)
(13)
=-psi_0(1).
(14)

In general, special values for integral indices are given by

psi_n(1)=(-1)^(n+1)n!zeta(n+1)
(15)
psi_n(1/2)=(-1)^(n+1)n!(2^(n+1)-1)zeta(n+1),
(16)

giving the digamma function, trigamma function, and tetragamma function identities

psi_1(1/2)=1/2pi^2
(17)
psi_1(1)=zeta(2)
(18)
=1/6pi^2
(19)
psi_2(1)=-2zeta(3)
(20)
psi_3(1/2)=pi^4,
(21)

and so on.

The polygamma function can be expressed in terms of Clausen functions for rational arguments and integer indices. Special cases are given by

psi_1(1/3)=2/3pi^2+3sqrt(3)Cl_2(2/3pi)
(22)
psi_1(2/3)=2/3pi^2-3sqrt(3)Cl_2(2/3pi)
(23)
psi_1(1/4)=pi^2+8K
(24)
psi_1(3/4)=pi^2-8K
(25)
psi_2(1/2)=-14zeta(3)
(26)
psi_2(1/3)=-(4pi^3)/(3sqrt(3))-18Cl_3(0)+18Cl_3(2/3pi)
(27)
psi_2(2/3)=(4pi^3)/(3sqrt(3))-18Cl_3(0)+18Cl_3(2/3pi)
(28)
psi_2(1/4)=-2pi^3-56zeta(3)
(29)
psi_2(3/4)=2pi^3-56zeta(3)
(30)
psi_2(1/6)=-182zeta(3)-4sqrt(3)pi^3
(31)
psi_2(5/6)=-182zeta(3)+4sqrt(3)pi^3
(32)
psi_3(1/3)=8/3pi^4+162sqrt(3)Cl_4(2/3pi)
(33)
psi_3(2/3)=8/3pi^4-162sqrt(3)Cl_4(2/3pi)
(34)
psi_3(1/4)=8pi^4+768beta(4)
(35)
psi_3(3/4)=8pi^4-768beta(4),
(36)

where K is Catalan's constant, zeta(z) is the Riemann zeta function, and beta(z) is the Dirichlet beta function.


See also

Catalan's Constant, Clausen Function, Digamma Function, Dirichlet Beta Function, Euler-Mascheroni Integrals, Gamma Function, Gauss's Digamma Theorem, Harmonic Number, Periodic Zeta Function, q-Polygamma Function, Riemann Zeta Function, Stirling's Series, Trigamma Function

Related Wolfram sites

http://functions.wolfram.com/GammaBetaErf/PolyGamma2/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Polygamma Functions." §6.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.Adamchik, V. S. "Polygamma Functions of Negative Order." J. Comput. Appl. Math. 100, 191-199, 1999.Arfken, G. "Digamma and Polygamma Functions." §10.2 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 549-555, 1985.Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, p. 163, 1985.Davis, H. T. Tables of the Higher Mathematical Functions. Bloomington, IN: Principia Press, 1933.Espinosa, O. and Moll, V. H. "A Generalized Polygamma Function." Integral Trans. Special Func. 15, 101-115, 2004.Grossman, N. "Polygamma Functions of Arbitrary Order." SIAM J. Math. Anal. 7, 366-372, 1976.Hansen, E. R. A Table of Series and Products. Englewood Cliffs, NJ: Prentice-Hall, 1975.Kölbig, K. S. "The Polygamma Function psi_k(x) for x=1/4 and x=3/4." J. Comp. Appl. Math. 75, 43-46, 1996.Kölbig, K. S. "The Polygamma Function and the Derivatives of the Cotangent Function for Rational Arguments." Report CN/96/5. CERN Computing and Networks Division, 1996.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 422-424, 1953.

Referenced on Wolfram|Alpha

Polygamma Function

Cite this as:

Weisstein, Eric W. "Polygamma Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PolygammaFunction.html

Subject classifications