Search Results for ""
521 - 530 of 1360 for primeSearch Results
An Euler-Jacobi pseudoprime to a base a is an odd composite number n such that (a,n)=1 and the Jacobi symbol (a/n) satisfies (a/n)=a^((n-1)/2) (mod n) (Guy 1994; but note ...
The numbers 2^npq and 2^nr are an amicable pair if the three integers p = 2^m(2^(n-m)+1)-1 (1) q = 2^n(2^(n-m)+1)-1 (2) r = 2^(n+m)(2^(n-m)+1)^2-1 (3) are all prime numbers ...
Consider the forms Q for which the generic characters chi_i(Q) are equal to some preassigned array of signs e_i=1 or -1, e_1,e_2,...,e_r, subject to product_(i=1)^(r)e_i=1. ...
An integer d is a fundamental discriminant if it is not equal to 1, not divisible by any square of any odd prime, and satisfies d=1 (mod 4) or d=8,12 (mod 16). The function ...
Let p>3 be a prime number, then 4(x^p-y^p)/(x-y)=R^2(x,y)-(-1)^((p-1)/2)pS^2(x,y), where R(x,y) and S(x,y) are homogeneous polynomials in x and y with integer coefficients. ...
A cycle of a finite group G is a minimal set of elements {A^0,A^1,...,A^n} such that A^0=A^n=I, where I is the identity element. A diagram of a group showing every cycle in ...
A family of operators mapping each space M_k of modular forms onto itself. For a fixed integer k and any positive integer n, the Hecke operator T_n is defined on the set M_k ...
The numbers H_n=H_n(0), where H_n(x) is a Hermite polynomial, may be called Hermite numbers. For n=0, 1, ..., the first few are 1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, ... ...
A composite number defined analogously to a Smith number except that the sum of the number's digits equals the sum of the digits of its distinct prime factors (excluding 1). ...
A non-zero module which is not the direct sum of two of its proper submodules. The negation of indecomposable is, of course, decomposable. An abstract vector space is ...
...
View search results from all Wolfram sites (5897 matches)

