TOPICS

# Euler-Jacobi Pseudoprime

An Euler-Jacobi pseudoprime to a base is an odd composite number such that and the Jacobi symbol satisfies

(Guy 1994; but note that Guy calls these simply "Euler pseudoprimes"). No odd composite number is an Euler-Jacobi pseudoprime for all bases relatively prime to it. This class includes some Carmichael numbers, all strong pseudoprimes to base , and all Euler pseudoprimes to base . An Euler pseudoprime is pseudoprime to at most 1/2 of all possible bases less than itself.

The first few base-2 Euler-Jacobi pseudoprimes are 561, 1105, 1729, 1905, 2047, 2465, ... (OEIS A047713), and the first few base-3 Euler-Jacobi pseudoprimes are 121, 703, 1729, 1891, 2821, 3281, 7381, ... (OEIS A048950). The number of base-2 Euler-Jacobi primes less than , , ... are 0, 1, 12, 36, 114, ... (OEIS A055551).

Euler Pseudoprime, Pseudoprime

## Explore with Wolfram|Alpha

More things to try:

## References

Guy, R. K. "Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes." §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994.Pinch, R. G. E. "The Pseudoprimes Up to ." ftp://ftp.dpmms.cam.ac.uk/pub/PSP/.Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, 1994.Sloane, N. J. A. Sequences A047713/M5461, A048950, and A055551 in "The On-Line Encyclopedia of Integer Sequences."

## Referenced on Wolfram|Alpha

Euler-Jacobi Pseudoprime

## Cite this as:

Weisstein, Eric W. "Euler-Jacobi Pseudoprime." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Euler-JacobiPseudoprime.html