TOPICS
Search

Hecke Operator


A family of operators mapping each space M_k of modular forms onto itself. For a fixed integer k and any positive integer n, the Hecke operator T_n is defined on the set M_k of entire modular forms of weight k by

 (T_nf)(tau)=n^(k-1)sum_(d|n)d^(-k)sum_(b=0)^(d-1)f((ntau+bd)/(d^2)).
(1)

For n a prime p, the operator collapses to

 (T_pf)(tau)=p^(k-1)f(ptau)+1/psum_(b=0)^(p-1)f((tau+b)/p).
(2)

If f in M_k has the Fourier series

 f(tau)=sum_(m=0)^inftyc(m)e^(2piimtau),
(3)

then T_nf has Fourier series

 (T_nf)(tau)=sum_(m=0)^inftygamma_n(m)e^(2piimtau),
(4)

where

 gamma_n(m)=sum_(d|(n,m))d^(k-1)c((mn)/(d^2))
(5)

(Apostol 1997, p. 121).

If (m,n)=1, the Hecke operators obey the composition property

 T_mT_n=T_(mn).
(6)

Any two Hecke operators T(n) and T(m) on M_k commute with each other, and moreover

 T(m)T(n)=sum_(d|(m,n))d^(k-1)T((mn)/(d^2))
(7)

(Apostol 1997, pp. 126-127).

Each Hecke operator T_n has eigenforms when the dimension of M_k is 1, so for k=4, 6, 8, 10, and 14, the eigenforms are the Eisenstein series G_4, G_6, G_8, G_(10), and G_(14), respectively. Similarly, each T_n has eigenforms when the dimension of the set of cusp forms M_(k,0) is 1, so for k=12, 16, 18, 20, 22, and 26, the eigenforms are Delta, DeltaG_4, DeltaG_6, DeltaG_8, DeltaG_(10), and DeltaG_(14), respectively, where Delta is the modular discriminant of the Weierstrass elliptic function (Apostol 1997, p. 130).


See also

Hecke Algebra, Modular Form

Explore with Wolfram|Alpha

References

Apostol, T. M. "The Hecke Operators." §6.7 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 120-122, 1997.

Referenced on Wolfram|Alpha

Hecke Operator

Cite this as:

Weisstein, Eric W. "Hecke Operator." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HeckeOperator.html

Subject classifications