Search Results for ""
31 - 40 of 42 for FactorialsSearch Results
The Pochhammer symbol (x)_n = (Gamma(x+n))/(Gamma(x)) (1) = x(x+1)...(x+n-1) (2) (Abramowitz and Stegun 1972, p. 256; Spanier 1987; Koepf 1998, p. 5) for n>=0 is an ...
The nth subfactorial (also called the derangement number; Goulden and Jackson 1983, p. 48; Graham et al. 2003, p. 1050) is the number of permutations of n objects in which no ...
A method for finding recurrence relations for hypergeometric polynomials directly from the series expansions of the polynomials. The method is effective and easily ...
The Barnes G-function is an analytic continuation of the G-function defined in the construction of the Glaisher-Kinkelin constant G(n)=([Gamma(n)]^(n-1))/(H(n-1)) (1) for ...
The Wigner 3j-symbols (j_1 j_2 j_3; m_1 m_2 m_3), also known as "3j symbols" (Messiah 1962, p. 1056) or Wigner coefficients (Shore and Menzel 1968, p. 275) are quantities ...
The Wigner 6j-symbols (Messiah 1962, p. 1062), commonly simply called the 6j-symbols, are a generalization of Clebsch-Gordan coefficients and Wigner 3j-symbol that arise in ...
The q-analog of the Pochhammer symbol defined by (a;q)_k={product_(j=0)^(k-1)(1-aq^j) if k>0; 1 if k=0; product_(j=1)^(|k|)(1-aq^(-j))^(-1) if k<0; ...
The Bessel functions of the first kind J_n(x) are defined as the solutions to the Bessel differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0 (1) which are ...
Consider the probability Q_1(n,d) that no two people out of a group of n will have matching birthdays out of d equally possible birthdays. Start with an arbitrary person's ...
The binomial coefficient (n; k) is the number of ways of picking k unordered outcomes from n possibilities, also known as a combination or combinatorial number. The symbols ...
...