Search Results for ""
11341 - 11350 of 13135 for Coordinate GeometrySearch Results
A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is ...
A modified spherical Bessel function of the second kind, also called a "spherical modified Bessel function of the first kind" (Arfken 1985) or (regrettably) a "modified ...
L_nu(z) = (1/2z)^(nu+1)sum_(k=0)^(infty)((1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2)) (1) = (2(1/2z)^nu)/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)sinh(zcostheta)sin^(2nu)thetadtheta, ...
Modular arithmetic is the arithmetic of congruences, sometimes known informally as "clock arithmetic." In modular arithmetic, numbers "wrap around" upon reaching a given ...
Define q=e^(2piitau) (cf. the usual nome), where tau is in the upper half-plane. Then the modular discriminant is defined by ...
The modular equation of degree n gives an algebraic connection of the form (K^'(l))/(K(l))=n(K^'(k))/(K(k)) (1) between the transcendental complete elliptic integrals of the ...
A function is said to be modular (or "elliptic modular") if it satisfies: 1. f is meromorphic in the upper half-plane H, 2. f(Atau)=f(tau) for every matrix A in the modular ...
Let A be an involutive algebra over the field C of complex numbers with involution xi|->xi^♯. Then A is a modular Hilbert algebra if A has an inner product <··> and a ...
A module is a mathematical object in which things can be added together commutatively by multiplying coefficients and in which most of the rules of manipulating vectors hold. ...
The transform inverting the sequence g(n)=sum_(d|n)f(d) (1) into f(n)=sum_(d|n)mu(d)g(n/d), (2) where the sums are over all possible integers d that divide n and mu(d) is the ...
...