Define
(cf. the usual nome), where
is in the upper half-plane.
Then the modular discriminant is defined by
 |
(1)
|
However, some care is needed as some authors omit the factor of
when defining the discriminant (Rankin 1977, p. 196;
Berndt 1988, p. 326; Milne 2000).
If
and
are the elliptic invariants of a Weierstrass
elliptic function
with periods
and
, then the discriminant is defined by
 |
(2)
|
Letting
,
then
The Fourier series of
for
, where
is the upper half-plane,
is
 |
(6)
|
where
is the tau function, and
are integers (Apostol 1997, p. 20). The discriminant
can also be expressed in terms of the Dedekind
eta function
by
![Delta(tau)=(2pi)^(12)[eta(tau)]^(24)](/images/equations/ModularDiscriminant/NumberedEquation4.svg) |
(7)
|
(Apostol 1997, p. 51).
See also
Dedekind Eta Function,
Elliptic Invariants,
Klein's
Absolute Invariant,
Nome,
Tau
Function,
Weierstrass Elliptic Function
Explore with Wolfram|Alpha
References
Apostol, T. M. "The Discriminant
" and "The Fourier Expansions of
and
." §1.11 and 1.15 in Modular
Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag,
pp. 14 and 20-22, 1997.Berndt, B. C. Ramanujan's
Notebooks, Part II. New York: Springer-Verlag, p. 326, 1988.Brezhnev,
Y. V. "Uniformisation: On the Burnside Curve
." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.Milne,
S. C. "Hankel Determinants of Eisenstein Series." 13 Sep 2000. http://arxiv.org/abs/math.NT/0009130.Nesterenko,
Yu. V. A Course on Algebraic Independence: Lectures at IHP 1999. Unpublished
manuscript. 1999.Rankin, R. A. Modular
Forms and Functions. Cambridge, England: Cambridge University Press, p. 196,
1977.Referenced on Wolfram|Alpha
Modular Discriminant
Cite this as:
Weisstein, Eric W. "Modular Discriminant."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ModularDiscriminant.html
Subject classifications