TOPICS
Search

Modified Spherical Bessel Function of the First Kind


ModifiedSphericalBesselI

A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is the first solution to the modified spherical Bessel differential equation, given by

 i_n(x)=sqrt(pi/(2x))I_(n+1/2)(x),
(1)

where I_n(z) is a modified Bessel function of the first kind (Arfken 1985, p. 633).

For positive x, the first few values for small nonnegative integer indices are

i_0(x)=(sinhx)/x
(2)
i_1(x)=(xcoshx-sinhx)/(x^2)
(3)
i_2(x)=((x^2+3)sinhx-3xcoshx)/(x^3)
(4)
i_3(x)=((x^3+15x)coshx-(6x^2+15)sinhx)/(x^4)
(5)
i_4(x)=((x^4+45x^2+105)sinhx-(10x^3+105x)coshx)/(x^5)
(6)

(OEIS A094674 and A094675).

Writing

 i_n(z)=g_n(z)sinhz+g_(-(n+1))(z)coshz,
(7)

the g_n are given by the recurrence equation

 g_(n-1)(z)-g_(n+1)(z)=(2n+1)z^(-1)g_n(z)
(8)

together with

g_0(z)=z^(-1)
(9)
g_1(z)=-z^(-2)
(10)

(Abramowitz and Stegun 1972, p. 443).

The parity of i_n(x) is (-1)^n (Arfken 1985, p. 633).

i_n(x) is related to the spherical Bessel function of the first kind j_n(x) by

 i_n(x)=i^(-n)j_n(ix)
(11)

for x>0 and integer n (Arfken 1985, p. 633).

They also satisfy the differential identities

i_(n+1)(x)=x^nd/(dx)(x^(-n)i_n)
(12)
i_n(x)=x^n(d/(xdx))^n(sinhx)/x,
(13)

and the recurrence relations

i_(n-1)(x)-i_(n+1)(x)=(2n+1)/xi_n(x)
(14)
ni_(n-1)(x)+(n+1)i_(n+1)(x)=(2n+1)i_n^'(x)
(15)

(Arfken 1985, p. 634).


See also

Modified Bessel Function of the First Kind, Modified Spherical Bessel Function of the Second Kind

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Modified Spherical Bessel Functions." §10.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 443-445, 1972.Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 633-634, 1985.Sloane, N. J. A. Sequences A094674 and A094675 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Modified Spherical Bessel Function of the First Kind

Cite this as:

Weisstein, Eric W. "Modified Spherical Bessel Function of the First Kind." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheFirstKind.html

Subject classifications