## See also

Isogonal Conjugate,

Symmedian Point,

Symmedial Triangle,

Triangle
Centroid,

Triangle Median
## Explore with Wolfram|Alpha

## References

Casey, J. "Theory of Isogonal and Isotomic Points, and of Antiparallel and Symmedian Lines." Supp. Ch. §1 in *A
Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction
to Modern Geometry with Numerous Examples, 5th ed., rev. enl.* Dublin: Hodges,
Figgis, & Co., pp. 165-173, 1888.Coolidge, J. L. *A
Treatise on the Geometry of the Circle and Sphere.* New York: Chelsea, p. 65,
1971.Johnson, R. A. *Modern
Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle.*
Boston, MA: Houghton Mifflin, pp. 213-218, 1929.Lachlan, R. *An
Elementary Treatise on Modern Pure Geometry.* London: Macmillian, pp. 62-63,
1893.Mackay, J. S. "Symmedians of a Triangle and Their Concomitant
Circles." *Proc. Edinburgh Math. Soc.* **14**, 37-103, 1896.## Referenced
on Wolfram|Alpha

Symmedian
## Cite this as:

Weisstein, Eric W. "Symmedian." From *MathWorld*--A Wolfram Web Resource. https://mathworld.wolfram.com/Symmedian.html

## Subject classifications