TOPICS
Search

Search Results for ""


871 - 880 of 13135 for www.bong88.com login %...Search Results
A series of the form sum_(n=0)^inftya_nJ_(nu+n)(z), (1) where nu is a real and J_(nu+n)(z) is a Bessel function of the first kind. Special cases are ...
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...
The Bessel functions of the first kind J_n(x) are defined as the solutions to the Bessel differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0 (1) which are ...
A Bessel function of the second kind Y_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1), sometimes also denoted N_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 657, ...
Krall and Fink (1949) defined the Bessel polynomials as the function y_n(x) = sum_(k=0)^(n)((n+k)!)/((n-k)!k!)(x/2)^k (1) = sqrt(2/(pix))e^(1/x)K_(-n-1/2)(1/x), (2) where ...
Bessel's correction is the factor (N-1)/N in the relationship between the variance sigma and the expectation values of the sample variance, <s^2>=(N-1)/Nsigma^2, (1) where ...
An interpolation formula, sometimes known as the Newton-Bessel formula, given by (1) for p in [0,1], where delta is the central difference and B_(2n) = 1/2G_(2n) (2) = ...
J_n(x)=1/piint_0^picos(ntheta-xsintheta)dtheta, where J_n(x) is a Bessel function of the first kind.
If f(x) is piecewise continuous and has a generalized Fourier series sum_(i)a_iphi_i(x) (1) with weighting function w(x), it must be true that ...
Let x^__1 and s_1^2 be the observed mean and variance of a sample of N_1 drawn from a normal universe with unknown mean mu_((1)) and let x^__2 and s_2^2 be the observed mean ...
1 ... 85|86|87|88|89|90|91 ... 1314 Previous Next

...