Search Results for ""
311 - 320 of 760 for principal ideal domainSearch Results
The inverse cosine is the multivalued function cos^(-1)z (Zwillinger 1995, p. 465), also denoted arccosz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
The inverse hyperbolic cosecant csch^(-1)z (Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosecant (Harris and Stocker 1998, p. 271) and sometimes denoted ...
The inverse hyperbolic cosine cosh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic cotangent coth^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cotangent (Harris and Stocker 1998, p. 267), ...
The inverse hyperbolic secant sech^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic secant (Harris and Stocker 1998, p. 271) and ...
The inverse hyperbolic sine sinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic tangent tanh^(-1)z (Zwillinger 1995, p. 481; Beyer 1987, p. 181), sometimes called the area hyperbolic tangent (Harris and Stocker 1998, p. 267), is ...
The inverse secant sec^(-1)z (Zwillinger 1995, p. 465), also denoted arcsecz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 315; Jeffrey 2000, p. 124), is ...
Let kappa_1 and kappa_2 be the principal curvatures, then their mean H=1/2(kappa_1+kappa_2) (1) is called the mean curvature. Let R_1 and R_2 be the radii corresponding to ...
An Alexander matrix is a presentation matrix for the Alexander invariant H_1(X^~) of a knot K. If V is a Seifert matrix for a tame knot K in S^3, then V^(T)-tV and V-tV^(T) ...
...
View search results from all Wolfram sites (8472 matches)

