TOPICS
Search

Alexander Matrix


An Alexander matrix is a presentation matrix for the Alexander invariant H_1(X^~) of a knot K. If V is a Seifert matrix for a tame knot K in S^3, then V^(T)-tV and V-tV^(T) are Alexander matrices for K, where V^(T) denotes the transpose.


See also

Alexander Ideal, Alexander Invariant, Alexander Polynomial, Seifert Matrix

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 206-207, 1976.

Referenced on Wolfram|Alpha

Alexander Matrix

Cite this as:

Weisstein, Eric W. "Alexander Matrix." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AlexanderMatrix.html

Subject classifications