TOPICS
Search

Search Results for ""


501 - 510 of 821 for World Year of PhysicsSearch Results
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
There are several q-analogs of the cosine function. The two natural definitions of the q-cosine defined by Koekoek and Swarttouw (1998) are given by cos_q(z) = ...
The q-analog of the factorial (by analogy with the q-gamma function). For k an integer, the q-factorial is defined by [k]_q! = faq(k,q) (1) = ...
A q-analog of the gamma function defined by Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x), (1) where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek ...
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
The q-analog of pi pi_q can be defined by setting a=0 in the q-factorial [a]_q!=1(1+q)(1+q+q^2)...(1+q+...+q^(a-1)) (1) to obtain ...
There are several q-analogs of the sine function. The two natural definitions of the q-sine defined by Koekoek and Swarttouw (1998) are given by sin_q(z) = ...
Zeros of the Riemann zeta function zeta(s) come in two different types. So-called "trivial zeros" occur at all negative even integers s=-2, -4, -6, ..., and "nontrivial ...
The cube is the Platonic solid composed of six square faces that meet each other at right angles and has eight vertices and 12 edges. It is also the uniform polyhedron with ...
An affine variety V is an algebraic variety contained in affine space. For example, {(x,y,z):x^2+y^2-z^2=0} (1) is the cone, and {(x,y,z):x^2+y^2-z^2=0,ax+by+cz=0} (2) is a ...
1 ... 48|49|50|51|52|53|54 ... 83 Previous Next

...