TOPICS
Search

Search Results for ""


351 - 360 of 3505 for Theta functionSearch Results
A Smarandache-like function which is defined where S_k(n) is defined as the smallest integer for which n|S_k(n)^k. The Smarandache S_k(n) function can therefore be obtained ...
Define the Airy zeta function for n=2, 3, ... by Z(n)=sum_(r)1/(r^n), (1) where the sum is over the real (negative) zeros r of the Airy function Ai(z). This has the ...
The generalized hypergeometric function F(x)=_pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;x] satisfies the equation where theta=x(partial/partialx) is the ...
L_nu(z) = (1/2z)^(nu+1)sum_(k=0)^(infty)((1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2)) (1) = (2(1/2z)^nu)/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)sinh(zcostheta)sin^(2nu)thetadtheta, ...
A function possessing a single period in the complex plane is said to be singly periodic, of often simply periodic. Singly periodic functions include the trigonometric ...
Planck's's radiation function is the function f(x)=(15)/(pi^4)1/(x^5(e^(1/x)-1)), (1) which is normalized so that int_0^inftyf(x)dx=1. (2) However, the function is sometimes ...
Given a random variable x and a probability density function P(x), if there exists an h>0 such that M(t)=<e^(tx)> (1) for |t|<h, where <y> denotes the expectation value of y, ...
Let h:{0,1}^(l(n))×{0,1}^n->{0,1}^(m(n)) be efficiently computable by an algorithm (solving a P-problem). For fixed y in {0,1}^(l(n)), view h(x,y) as a function h_y(x) of x ...
The Hurwitz zeta function zeta(s,a) is a generalization of the Riemann zeta function zeta(s) that is also known as the generalized zeta function. It is classically defined by ...
A normalized form of the cumulative normal distribution function giving the probability that a variate assumes a value in the range [0,x], ...
1 ... 33|34|35|36|37|38|39 ... 351 Previous Next

...