TOPICS
Search

Generalized Hypergeometric Differential Equation


The generalized hypergeometric function

 F(x)=_pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;x]

satisfies the equation

 theta(theta+beta_1-1)...(theta+beta_q-1)F(x)=x(theta+alpha_1)(theta+alpha_2)...(theta+alpha_p)F(x),

where theta=x(partial/partialx) is the differential operator.


See also

Generalized Hypergeometric Function

Explore with Wolfram|Alpha

References

Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 26, 1998.Miller, W. Jr. Symmetry and Separation of Variables. Reading, MA: Addison-Wesley, p. 271, 1977.Rainville, E. D. Special Functions. New York: Chelsea, 1971.Slater, L. J. Confluent Hypergeometric Functions. Cambridge, England: Cambridge University Press, p. 1, 1960.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 128, 1997.

Referenced on Wolfram|Alpha

Generalized Hypergeometric Differential Equation

Cite this as:

Weisstein, Eric W. "Generalized Hypergeometric Differential Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GeneralizedHypergeometricDifferentialEquation.html

Subject classifications