Search Results for ""
3521 - 3530 of 3922 for Line graphsSearch Results

A Mersenne prime is a Mersenne number, i.e., a number of the form M_n=2^n-1, that is prime. In order for M_n to be prime, n must itself be prime. This is true since for ...
Consider the Euler product zeta(s)=product_(k=1)^infty1/(1-1/(p_k^s)), (1) where zeta(s) is the Riemann zeta function and p_k is the kth prime. zeta(1)=infty, but taking the ...
Minkowski's question mark function is the function y=?(x) defined by Minkowski for the purpose of mapping the quadratic surds in the open interval (0,1) into the rational ...
By way of analogy with the prime counting function pi(x), the notation pi_(a,b)(x) denotes the number of primes of the form ak+b less than or equal to x (Shanks 1993, pp. ...
The transformation of a sequence a_1, a_2, ... with a_n=sum_(d|n)b_d (1) into the sequence b_1, b_2, ... via the Möbius inversion formula, b_n=sum_(d|n)mu(n/d)a_d. (2) The ...
An elliptic curve of the form y^2=x^3+n for n an integer. This equation has a finite number of solutions in integers for all nonzero n. If (x,y) is a solution, it therefore ...
The Motzkin numbers enumerate various combinatorial objects. Donaghey and Shapiro (1977) give 14 different manifestations of these numbers. In particular, they give the ...
Consider the process of taking a number, multiplying its digits, then multiplying the digits of numbers derived from it, etc., until the remaining number has only one digit. ...
Napier's bones, also called Napier's rods, are numbered rods which can be used to perform multiplication of any number by a number 2-9. By placing "bones" corresponding to ...
The numerical value of ln10 is given by ln10=2.302585092994045684... (OEIS A002392). It was computed to 10^(11) decimal digits by S. Kondo on May 20, 2011 (Yee). The Earls ...

...