A Mersenne prime is a Mersenne number, i.e., a number of the form
that is prime. In order for to be prime, must itself be prime. This is true since for composite with factors and , . Therefore, can be written as , which is a binomial number that always has a factor .
The first few Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... (OEIS A000668) corresponding to indices , 3, 5, 7, 13, 17, 19, 31, 61, 89, ... (OEIS A000043).
Mersenne primes were first studied because of the remarkable properties that every Mersenne prime corresponds to exactly one perfect number. L. Welsh maintains an extensive bibliography and history of Mersenne numbers.
It has been conjectured that there exist an infinite number of Mersenne primes. Fitting a line through the origin to the asymptotic number of Mersenne primes with for the first 51 (known) Mersenne primes gives a best-fit line with , illustrated above. If the line is not restricted to pass through the origin, the best fit is . It has been conjectured (without any particularly strong evidence) that the constant is given by , where is the Euler-Mascheroni constant (Havil 2003, p. 116; Caldwell), a result related to Wagstaff's conjecture
However, finding Mersenne primes is computationally very challenging. For example, the 1963 discovery that is prime was heralded by a special postal meter design, illustrated above, issued in Urbana, Illinois.
G. Woltman has organized a distributed search program via the Internet known as GIMPS (Great Internet Mersenne Prime Search) in which hundreds of volunteers use their personal computers to perform pieces of the search. The efforts of GIMPS volunteers make this distributed computing project the discoverer of all of the Mersenne primes discovered since late 1996. As of Feb. 19, 2024, GIMPS participants have tested and verified all exponents below 67 million and tested all exponents below 115 at least once (GIMPS).
The table below gives the index of known Mersenne primes (OEIS A000043) , together with the number of digits, discovery years, and discoverer. A similar table has been compiled by C. Caldwell. Note that sequential indexing of "the" th Mersenne prime is tentative for until all exponents between and (namely up to ) have been verified to be composite (and therefore also tentative for the other known Mersenne primes and ).
# | digits | year | discoverer (reference) | value | |
1 | 2 | 1 | antiquity | 3 | |
2 | 3 | 1 | antiquity | 7 | |
3 | 5 | 2 | antiquity | 31 | |
4 | 7 | 3 | antiquity | 127 | |
5 | 13 | 4 | 1461 | Reguis (1536), Cataldi (1603) | 8191 |
6 | 17 | 6 | 1588 | Cataldi (1603) | 131071 |
7 | 19 | 6 | 1588 | Cataldi (1603) | 524287 |
8 | 31 | 10 | 1750 | Euler (1772) | 2147483647 |
9 | 61 | 19 | 1883 | Pervouchine (1883), Seelhoff (1886) | 2305843009213693951 |
10 | 89 | 27 | 1911 | Powers (1911) | 618970019642690137449562111 |
11 | 107 | 33 | 1913 | Powers (1914) | 162259276829213363391578010288127 |
12 | 127 | 39 | 1876 | Lucas (1876) | 170141183460469231731687303715884105727 |
13 | 521 | 157 | Jan. 30, 1952 | Robinson (1954) | 68647976601306097149...12574028291115057151 |
14 | 607 | 183 | Jan. 30, 1952 | Robinson (1954) | 53113799281676709868...70835393219031728127 |
15 | 1279 | 386 | Jun. 25, 1952 | Robinson (1954) | 10407932194664399081...20710555703168729087 |
16 | 2203 | 664 | Oct. 7, 1952 | Robinson (1954) | 14759799152141802350...50419497686697771007 |
17 | 2281 | 687 | Oct. 9, 1952 | Robinson (1954) | 44608755718375842957...64133172418132836351 |
18 | 3217 | 969 | Sep. 8, 1957 | Riesel | 25911708601320262777...46160677362909315071 |
19 | 4253 | 1281 | Nov. 3, 1961 | Hurwitz | 19079700752443907380...76034687815350484991 |
20 | 4423 | 1332 | Nov. 3, 1961 | Hurwitz | 28554254222827961390...10231057902608580607 |
21 | 9689 | 2917 | May 11, 1963 | Gillies (1964) | 47822027880546120295...18992696826225754111 |
22 | 9941 | 2993 | May 16, 1963 | Gillies (1964) | 34608828249085121524...19426224883789463551 |
23 | 11213 | 3376 | Jun. 2, 1963 | Gillies (1964) | 28141120136973731333...67391476087696392191 |
24 | 19937 | 6002 | Mar. 4, 1971 | Tuckerman (1971) | 43154247973881626480...36741539030968041471 |
25 | 21701 | 6533 | Oct. 30, 1978 | Noll and Nickel (1980) | 44867916611904333479...57410828353511882751 |
26 | 23209 | 6987 | Feb. 9, 1979 | Noll (Noll and Nickel 1980) | 40287411577898877818...36743355523779264511 |
27 | 44497 | 13395 | Apr. 8, 1979 | Nelson and Slowinski | 85450982430363380319...44867686961011228671 |
28 | 86243 | 25962 | Sep. 25, 1982 | Slowinski | 53692799550275632152...99857021709433438207 |
29 | 110503 | 33265 | Jan. 28, 1988 | Colquitt and Welsh (1991) | 52192831334175505976...69951621083465515007 |
30 | 132049 | 39751 | Sep. 20, 1983 | Slowinski | 51274027626932072381...52138578455730061311 |
31 | 216091 | 65050 | Sep. 6, 1985 | Slowinski | 74609310306466134368...91336204103815528447 |
32 | 756839 | 227832 | Feb. 19, 1992 | Slowinski and Gage | 17413590682008709732...02603793328544677887 |
33 | 859433 | 258716 | Jan. 10, 1994 | Slowinski and Gage | 12949812560420764966...02414267243500142591 |
34 | 1257787 | 378632 | Sep. 3, 1996 | Slowinski and Gage | 41224577362142867472...31257188976089366527 |
35 | 1398269 | 420921 | Nov. 12, 1996 | Joel Armengaud/GIMPS | 81471756441257307514...85532025868451315711 |
36 | 2976221 | 895832 | Aug. 24, 1997 | Gordon Spence/GIMPS | 62334007624857864988...76506256743729201151 |
37 | 3021377 | 909526 | Jan. 27, 1998 | Roland Clarkson/GIMPS | 12741168303009336743...25422631973024694271 |
38 | 6972593 | 2098960 | Jun. 1, 1999 | Nayan Hajratwala/GIMPS | 43707574412708137883...35366526142924193791 |
39 | 13466917 | 4053946 | Nov. 14, 2001 | Michael Cameron/GIMPS | 92494773800670132224...30073855470256259071 |
40 | 20996011 | 6320430 | Nov. 17, 2003 | Michael Shafer/GIMPS | 12597689545033010502...94714065762855682047 |
41 | 24036583 | 7235733 | May 15, 2004 | Josh Findley/GIMPS | 29941042940415717208...67436921882733969407 |
42 | 25964951 | 7816230 | Feb. 18, 2005 | Martin Nowak/GIMPS | 12216463006127794810...98933257280577077247 |
43 | 30402457 | 9152052 | Dec. 15, 2005 | Curtis Cooper and Steven Boone/GIMPS | 31541647561884608093...11134297411652943871 |
44 | 32582657 | 9808358 | Sep. 4, 2006 | Curtis Cooper and Steven Boone/GIMPS | 12457502601536945540...11752880154053967871 |
45 | 37156667 | 11185272 | Sep. 6, 2008 | Hans-Michael Elvenich/GIMPS | 20225440689097733553...21340265022308220927 |
46 | 42643801 | 12837064 | Jun. 12, 2009 | Odd Magnar Strindmo/GIMPS | 16987351645274162247...84101954765562314751 |
47 | 43112609 | 12978189 | Aug. 23, 2008 | Edson Smith/GIMPS | 31647026933025592314...80022181166697152511 |
48 | 57885161 | 17425170 | Jan. 25, 2013 | Curtis Cooper/GIMPS | 58188726623224644217...46141988071724285951 |
49? | 74207281 | 22338618 | Jan. 7, 2016 | Curtis Cooper/GIMPS | 30037641808460618205...87010073391086436351 |
50? | 77232917 | 23249425 | Dec. 26, 2017 | Jonathan Pace/GIMPS | 46733318335923109998...82730618069762179071 |
51? | 82589933 | 24862048 | Dec. 7, 2018 | Patrick Laroche/GIMPS | 14889444574204132554...37951210325217902591 |
Trial division is often used to establish the compositeness of a potential Mersenne prime. This test immediately shows to be composite for , 23, 83, 131, 179, 191, 239, and 251 (with small factors 23, 47, 167, 263, 359, 383, 479, and 503, respectively). A much more powerful primality test for is the Lucas-Lehmer test.
If is a prime, then divides iff is prime. It is also true that prime divisors of must have the form where is a positive integer and simultaneously of either the form or (Uspensky and Heaslet 1939).
A prime factor of a Mersenne number is a Wieferich prime iff . Therefore, Mersenne primes are not Wieferich primes.