TOPICS
Search

Search Results for ""


101 - 110 of 222 for IntegrationSearch Results
The polylogarithm Li_n(z), also known as the Jonquière's function, is the function Li_n(z)=sum_(k=1)^infty(z^k)/(k^n) (1) defined in the complex plane over the open unit ...
Watson (1939) considered the following three triple integrals, I_1 = 1/(pi^3)int_0^piint_0^piint_0^pi(dudvdw)/(1-cosucosvcosw) (1) = (4[K(1/2sqrt(2))]^2)/(pi^2) (2) = ...
A differential k-form is a tensor of tensor rank k that is antisymmetric under exchange of any pair of indices. The number of algebraically independent components in n ...
A function built up of a finite combination of constant functions, field operations (addition, multiplication, division, and root extractions--the elementary operations)--and ...
Let B_t={B_t(omega)/omega in Omega}, t>=0, be one-dimensional Brownian motion. Integration with respect to B_t was defined by Itô (1951). A basic result of the theory is that ...
The most common "sine integral" is defined as Si(z)=int_0^z(sint)/tdt (1) Si(z) is the function implemented in the Wolfram Language as the function SinIntegral[z]. Si(z) is ...
The problem of finding the mean triangle area of a triangle with vertices picked inside a triangle with unit area was proposed by Watson (1865) and solved by Sylvester. It ...
Given a homogeneous linear second-order ordinary differential equation, y^('')+P(x)y^'+Q(x)y=0, (1) call the two linearly independent solutions y_1(x) and y_2(x). Then ...
An identity in calculus of variations discovered in 1868 by Beltrami. The Euler-Lagrange differential equation is (partialf)/(partialy)-d/(dx)((partialf)/(partialy_x))=0. (1) ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
1 ... 8|9|10|11|12|13|14 ... 23 Previous Next

...