TOPICS
Search

Search Results for ""


1051 - 1060 of 1230 for Frullanis IntegralSearch Results
Homology is a concept that is used in many branches of algebra and topology. Historically, the term "homology" was first used in a topological sense by Poincaré. To him, it ...
The hyperbolic sine is defined as sinhz=1/2(e^z-e^(-z)). (1) The notation shz is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). It is implemented in the Wolfram ...
By way of analogy with the usual tangent tanz=(sinz)/(cosz), (1) the hyperbolic tangent is defined as tanhz = (sinhz)/(coshz) (2) = (e^z-e^(-z))/(e^z+e^(-z)) (3) = ...
The inverse cosecant is the multivalued function csc^(-1)z (Zwillinger 1995, p. 465), also denoted arccscz (Abramowitz and Stegun 1972, p. 79; Spanier and Oldham 1987, p. ...
The inverse cosine is the multivalued function cos^(-1)z (Zwillinger 1995, p. 465), also denoted arccosz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
The inverse hyperbolic cosecant csch^(-1)z (Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosecant (Harris and Stocker 1998, p. 271) and sometimes denoted ...
The inverse hyperbolic cosine cosh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic cotangent coth^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cotangent (Harris and Stocker 1998, p. 267), ...
The inverse hyperbolic secant sech^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic secant (Harris and Stocker 1998, p. 271) and ...
The inverse hyperbolic sine sinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is the ...
1 ... 103|104|105|106|107|108|109 ... 123 Previous Next

...