Search Results for ""
871 - 880 of 1145 for Euler AnglesSearch Results

The first practical algorithm for determining if there exist integers a_i for given real numbers x_i such that a_1x_1+a_2x_2+...+a_nx_n=0, or else establish bounds within ...
In 1638, Fermat proposed that every positive integer is a sum of at most three triangular numbers, four square numbers, five pentagonal numbers, and n n-polygonal numbers. ...
The point F at which the incircle and nine-point circle are tangent. It has triangle center function alpha=1-cos(B-C) (1) and is Kimberling center X_(11). If F is the ...
In 1757, V. Riccati first recorded the generalizations of the hyperbolic functions defined by F_(n,r)^alpha(x)=sum_(k=0)^infty(alpha^k)/((nk+r)!)x^(nk+r), (1) for r=0, ..., ...
The geometric mean of a sequence {a_i}_(i=1)^n is defined by G(a_1,...,a_n)=(product_(i=1)^na_i)^(1/n). (1) Thus, G(a_1,a_2) = sqrt(a_1a_2) (2) G(a_1,a_2,a_3) = ...
The harmonic mean H(x_1,...,x_n) of n numbers x_i (where i=1, ..., n) is the number H defined by 1/H=1/nsum_(i=1)^n1/(x_i). (1) The harmonic mean of a list of numbers may be ...
The values of -d for which imaginary quadratic fields Q(sqrt(-d)) are uniquely factorable into factors of the form a+bsqrt(-d). Here, a and b are half-integers, except for ...
The Heesch number of a closed plane figure is the maximum number of times that figure can be completely surrounded by copies of itself. The determination of the maximum ...
Given a sequence of values {a_k}_(k=1)^n, the high-water marks are the values at which the running maximum increases. For example, given a sequence (3,5,7,8,8,5,7,9,2,5) with ...
The inverse erf function is the inverse function erf^(-1)(z) of the erf function erf(x) such that erf(erf^(-1)(x)) = x (1) erf^(-1)(erf(x)) = x, (2) with the first identity ...

...