Search Results for ""
821 - 830 of 1612 for Dirac equationSearch Results
Given a system of ordinary differential equations of the form d/(dt)[x; y; v_x; v_y]=-[0 0 -1 0; 0 0 0 -1; Phi_(xx)(t) Phi_(yx)(t) 0 0; Phi_(xy)(t) Phi_(yy)(t) 0 0][x; y; ...
A plane curve proposed by Descartes to challenge Fermat's extremum-finding techniques. In parametric form, x = (3at)/(1+t^3) (1) y = (3at^2)/(1+t^3). (2) The curve has a ...
Denote the nth derivative D^n and the n-fold integral D^(-n). Then D^(-1)f(t)=int_0^tf(xi)dxi. (1) Now, if the equation D^(-n)f(t)=1/((n-1)!)int_0^t(t-xi)^(n-1)f(xi)dxi (2) ...
Define the sequence a_0=1, a_1=x, and a_n=(a_(n-2))/(1+a_(n-1)) (1) for n>=0. The first few values are a_2 = 1/(1+x) (2) a_3 = (x(1+x))/(2+x) (3) a_4 = ...
An important result in valuation theory which gives information on finding roots of polynomials. Hensel's lemma is formally stated as follows. Let (K,|·|) be a complete ...
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
Given a circle C with center O and radius k, then two points P and Q are inverse with respect to C if OP·OQ=k^2. If P describes a curve C_1, then Q describes a curve C_2 ...
The inverse erf function is the inverse function erf^(-1)(z) of the erf function erf(x) such that erf(erf^(-1)(x)) = x (1) erf^(-1)(erf(x)) = x, (2) with the first identity ...
Kepler's folium is a folium curve explored by Kepler in 1609 (Lawrence 1972, p. 151; Gray et al. 2006, p. 85). When used without qualification, the term "folium" sometimes ...
A (general, asymmetric) lens is a lamina formed by the intersection of two offset disks of unequal radii such that the intersection is not empty, one disk does not completely ...
...
View search results from all Wolfram sites (22988 matches)

