A Vandermonde matrix is a type of matrix that arises in the polynomial least squares fitting , Lagrange
 interpolating polynomials  (Hoffman and Kunze p. 114), and the reconstruction
 of a statistical distribution  from the
 distribution's moments  (von Mises 1964; Press et al.
  1992, p. 83). A Vandermonde matrix of order   is of the form 
(Press et al.  1992; Meyer 2000, p. 185). A Vandermonde matrix is sometimes also called an alternant matrix (Marcus and Minc 1992, p. 15). Note that some
 authors define the transpose  of this matrix as the
 Vandermonde matrix (Marcus and Minc 1992, p. 15; Golub and Van Loan 1996; Aldrovandi
 2001, p. 193).
The solution of an  
 Vandermonde matrix equation requires   operations. The determinants 
 of Vandermonde matrices have a particularly simple form.
 
See also Generalized Vandermonde Matrix , 
Least Squares Fitting--Polynomial ,
 
Toeplitz Matrix , 
Tridiagonal
 Matrix , 
Vandermonde Determinant 
Explore with Wolfram|Alpha 
References Aldrovandi, R. Special Matrices of Mathematical Physics: Stochastic, Circulant and Bell Matrices.  
 Singapore: World Scientific, 2001. Golub, G. H. and Van Loan, C. F.
 Matrix
 Computations, 3rd ed.   Baltimore, MD: Johns Hopkins University Press, 1996. Hoffman,
 K. M. and Kunze, R. Linear
 Algebra, 2nd ed.   Englewood Cliffs, NJ: Prentice Hall, 1971. Marcus,
 M. and Minc, H. "Vandermonde Matrix." §2.6.2 in A
 Survey of Matrix Theory and Matrix Inequalities.   New York: Dover, pp. 15-16,
 1992. Meyer, C. D. Matrix
 Analysis and Applied Linear Algebra.   Philadelphia, PA: SIAM, 2000. Press,
 W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
 "Vandermonde Matrices and Toeplitz Matrices." §2.8 in Numerical
 Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.   Cambridge, England:
 Cambridge University Press, pp. 82-89, 1992. Trott, M. The
 Mathematica GuideBook for Programming.   New York: Springer-Verlag, pp. 56-57,
 2004. http://www.mathematicaguidebooks.org/ . von
 Mises, R. Mathematical
 Theory of Probability and Statistics.   New York: Academic Press, 1964. Referenced
 on Wolfram|Alpha Vandermonde Matrix 
Cite this as: 
Weisstein, Eric W.  "Vandermonde Matrix."
From MathWorld  --A Wolfram Resource. https://mathworld.wolfram.com/VandermondeMatrix.html 
Subject classifications