TOPICS
Search

Ordinary Double Point


An ordinary double point of a plane curve is point where a curve intersects itself such that two branches of the curve have distinct tangent lines. Ordinary double points of plane curves are commonly known as crunodes. Ordinary double points of a plane curves given by f(x,y)=0 satisfy

 f=f_x=f_y=0,
(1)

where f_x denotes a partial derivative.

SimpleDoublePoint

Let f:R->R^3 (or f:S^1->R^3) be a space curve. Then a point p in Im(f) subset R^3 (where Im(f) denotes the immersion of f) is an ordinary double point of the space curve if its preimage under f consists of two values t_1 and t_2, and the two tangent vectors f^'(t_1) and f^'(t_2) are noncollinear. Geometrically, this means that, in a neighborhood of p, the curve consists of two transverse branches. Ordinary double points are isolated singularities having Coxeter-Dynkin diagram of type A_1, and also called "nodes" or "simple double points."

Ordinary double points of a surface given by f(x,y,z)=0 satisfy

 f=f_x=f_y=f_z=0,
(2)

where f_x denotes a partial derivative. A surface in complex three-space admits at most finitely many ordinary double points. The maximum possible number of ordinary double points mu(d) for a surface of degree d=1, 2, ..., are 0, 1, 4, 16, 31, 65, 99<=mu(7)<=104, 168<=mu(8)<=174, 216<=mu(8)<=246, 345<=mu(10)<=360, 425<=mu(11)<=480, 600<=mu(12)<=645 ... (OEIS A046001; Chmutov 1992, Endraß 1995, Labs 2004).

mu(4)=16 was known to Kummer in 1864 (Chmutov 1992), the fact that mu(5)=31 was proved by Beauville (1980), and mu(6)=65 was proved by Jaffe and Ruberman (1997). For d>=3, the following inequality holds:

 mu(d)<=1/2[d(d-1)-3]
(3)

(Endraß 1995). Examples of algebraic surfaces having the maximum (known) number of ordinary double points are given in the following table.


See also

Algebraic Surface, Barth Decic, Barth Sextic, Cayley Cubic, Chmutov Surface, Cusp, Dervish, Double Point, Endraß Octic, Isolated Singularity, Kummer Surface, Rational Double Point, Sarti Dodecic

Portions of this entry contributed by Sergei Duzhin

Explore with Wolfram|Alpha

References

Basset, A. B. "The Maximum Number of Double Points on a Surface." Nature 73, 246, 1906.Beauville, A. "Sur le nombre maximum de points doubles d'une surface dans P^3 (mu(5)=31)." Journées de géométrie algébrique d'Angers (1979). Sijthoff & Noordhoff, pp. 207-215, 1980.Chmutov, S. V. "Examples of Projective Surfaces with Many Singularities." J. Algebraic Geom. 1, 191-196, 1992.Endraß, S. "Surfaces with Many Ordinary Nodes." http://enriques.mathematik.uni-mainz.de/docs/Eflaechen.shtml.Endraß, S. "Flächen mit vielen Doppelpunkten." DMV-Mitteilungen 4, 17-20, Apr. 1995.Endraß, S. Symmetrische Fläche mit vielen gewöhnlichen Doppelpunkten. Ph.D. thesis. Erlangen, Germany, 1996.Fischer, G. (Ed.). Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Kommentarband. Braunschweig, Germany: Vieweg, pp. 12-13, 1986.Jaffe, D. B. and Ruberman, D. "A Sextic Surface Cannot have 66 Nodes." J. Algebraic Geom. 6, 151-168, 1997.Kreiss, H. O. "Über syzygetische Flächen." Ann. Math. 41, 105-111, 1955.Labs, O. "A Septic with 99 Real Nodes." 20 Sep. 2004. http://www.arxiv.org/abs/math.AG/0409348/.Miyaoka, Y. "The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants." Math. Ann. 268, 159-171, 1984.Sloane, N. J. A. Sequence A046001 in "The On-Line Encyclopedia of Integer Sequences."Togliatti, E. G. "Sulle superficie algebriche col massimo numero di punti doppi." Rend. Sem. Mat. Torino 9, 47-59, 1950.Varchenko, A. N. "On the Semicontinuity of Spectrum and an Upper Bound for the Number of Singular Points on a Projective Hypersurface." Dokl. Acad. Nauk SSSR 270, 1309-1312, 1983.Walker, R. J. Algebraic Curves. New York: Springer-Verlag, pp. 56-57, 1978.

Referenced on Wolfram|Alpha

Ordinary Double Point

Cite this as:

Duzhin, Sergei and Weisstein, Eric W. "Ordinary Double Point." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/OrdinaryDoublePoint.html

Subject classifications