An ordinary double point of a plane curve is point where a curve intersects itself such that two branches of the curve have distinct tangent lines. Ordinary double
points of plane curves are commonly known as crunodes.
Ordinary double points of a plane curves given by satisfy
Let
(or )
be a space curve. Then a point (where denotes the immersion of
)
is an ordinary double point of the space curve if its preimage
under
consists of two values and , and the two tangent vectors and are noncollinear. Geometrically, this means that, in
a neighborhood of , the curve consists of two transverse branches. Ordinary double
points are isolated singularities having
Coxeter-Dynkin diagram of type , and also called "nodes" or "simple double
points."
Ordinary double points of a surface given by satisfy
(2)
where
denotes a partial derivative. A surface in
complex three-space admits at most finitely many ordinary double points. The maximum
possible number of ordinary double points for a surface of degree , 2, ..., are 0, 1, 4, 16, 31, 65, , , , , , ... (OEIS A046001;
Chmutov 1992, Endraß 1995, Labs 2004).
was known to Kummer in 1864 (Chmutov 1992), the fact that was proved by Beauville (1980), and was proved by Jaffe and Ruberman (1997). For , the following inequality holds:
(3)
(Endraß 1995). Examples of algebraic surfaces having the maximum (known) number of ordinary double points are given in the following
table.
Basset, A. B. "The Maximum Number of Double Points on a Surface." Nature73, 246, 1906.Beauville, A.
"Sur le nombre maximum de points doubles d'une surface dans ()." Journées de géométrie
algébrique d'Angers (1979). Sijthoff & Noordhoff, pp. 207-215,
1980.Chmutov, S. V. "Examples of Projective Surfaces with
Many Singularities." J. Algebraic Geom.1, 191-196, 1992.Endraß,
S. "Surfaces with Many Ordinary Nodes." http://enriques.mathematik.uni-mainz.de/docs/Eflaechen.shtml.Endraß,
S. "Flächen mit vielen Doppelpunkten." DMV-Mitteilungen4,
17-20, Apr. 1995.Endraß, S. Symmetrische Fläche mit vielen
gewöhnlichen Doppelpunkten. Ph.D. thesis. Erlangen, Germany, 1996.Fischer,
G. (Ed.). Mathematische
Modelle aus den Sammlungen von Universitäten und Museen, Kommentarband.
Braunschweig, Germany: Vieweg, pp. 12-13, 1986.Jaffe, D. B.
and Ruberman, D. "A Sextic Surface Cannot have 66 Nodes." J. Algebraic
Geom.6, 151-168, 1997.Kreiss, H. O. "Über
syzygetische Flächen." Ann. Math.41, 105-111, 1955.Labs,
O. "A Septic with 99 Real Nodes." 20 Sep. 2004. http://www.arxiv.org/abs/math.AG/0409348/.Miyaoka,
Y. "The Maximal Number of Quotient Singularities on Surfaces with Given Numerical
Invariants." Math. Ann.268, 159-171, 1984.Sloane,
N. J. A. Sequence A046001 in "The
On-Line Encyclopedia of Integer Sequences."Togliatti, E. G.
"Sulle superficie algebriche col massimo numero di punti doppi." Rend.
Sem. Mat. Torino9, 47-59, 1950.Varchenko, A. N. "On
the Semicontinuity of Spectrum and an Upper Bound for the Number of Singular Points
on a Projective Hypersurface." Dokl. Acad. Nauk SSSR270, 1309-1312,
1983.Walker, R. J. Algebraic
Curves. New York: Springer-Verlag, pp. 56-57, 1978.