The Napoleon-Feuerbach cubic is the pivotal isogonal cubic with nine-point center
as the pivot point. It therefore has trilinear equation
It passes through Kimberling centers for (incenter ), 3 (circumcenter ), 4 (orthocenter ), 5 (nine-point center ),
17 (first Napoleon point), 18 (second
Napoleon point), 54 (Kosnita point), 61, 62,
195, 627, 628, 2120, 2121, as well as the excenters , , and .
See also
Pivotal Isogonal Cubic,
Triangle Cubic
Explore with Wolfram|Alpha
References
Čerin, Z. "On the Cubic of Napoleon." J. Geom. 66, 55-71, 1999.Gibert, B. "Napoleon-Feuerbach
Cubic." http://perso.wanadoo.fr/bernard.gibert/Exemples/k005.html.Referenced
on Wolfram|Alpha
Napoleon-Feuerbach Cubic
Cite this as:
Weisstein, Eric W. "Napoleon-Feuerbach Cubic."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Napoleon-FeuerbachCubic.html
Subject classifications