TOPICS
Search

Second Napoleon Point


SecondNapoleonPoint

The second Napoleon point N^', also called the inner Napoleon point, is the concurrence of lines drawn between polygon vertices of a given triangle DeltaABC and the opposite polygon vertices of the corresponding inner Napoleon triangle. It has triangle center function

 alpha=csc(A-1/6pi)

and is Kimberling center X_(18) (Kimberling 1998, p. 69).


See also

First Napoleon Point, Inner Napoleon Triangle, Napoleon Points, Outer Napoleon Triangle, Second Fermat Point

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Kimberling, C. "Napoleon Points." http://faculty.evansville.edu/ck6/tcenters/class/napoleon.html.Kimberling, C. "Encyclopedia of Triangle Centers: X(18)=2nd Napoleon Point." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X18.

Referenced on Wolfram|Alpha

Second Napoleon Point

Cite this as:

Weisstein, Eric W. "Second Napoleon Point." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SecondNapoleonPoint.html

Subject classifications