TOPICS
Search

Lebesgue-Stieltjes Integral


Let alpha(x) be a monotone increasing function and define an interval I=(x_1,x_2). Then define the nonnegative function

 U(I)=alpha(x_2)-alpha(x_1).

The Lebesgue integral with respect to a measure constructed using U(I) is called the Lebesgue-Stieltjes integral, or sometimes the Lebesgue-Radon integral.


Explore with Wolfram|Alpha

References

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 354, 1980.

Referenced on Wolfram|Alpha

Lebesgue-Stieltjes Integral

Cite this as:

Weisstein, Eric W. "Lebesgue-Stieltjes Integral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Lebesgue-StieltjesIntegral.html

Subject classifications