TOPICS
Search

Helmholtz Differential Equation


An elliptic partial differential equation given by

 del ^2psi+k^2psi=0,
(1)

where psi is a scalar function and del ^2 is the scalar Laplacian, or

 del ^2F+k^2F=0,
(2)

where F is a vector function and del ^2 is the vector Laplacian (Moon and Spencer 1988, pp. 136-143).

When k=0, the Helmholtz differential equation reduces to Laplace's equation. When k^2<0 (i.e., for imaginary k), the equation becomes the space part of the diffusion equation.

The Helmholtz differential equation can be solved by separation of variables in only 11 coordinate systems, 10 of which (with the exception of confocal paraboloidal coordinates) are particular cases of the confocal ellipsoidal system: Cartesian, confocal ellipsoidal, confocal paraboloidal, conical, cylindrical, elliptic cylindrical, oblate spheroidal, paraboloidal, parabolic cylindrical, prolate spheroidal, and spherical coordinates (Eisenhart 1934ab). Laplace's equation (the Helmholtz differential equation with k=0) is separable in the two additional bispherical coordinates and toroidal coordinates.

If Helmholtz's equation is separable in a three-dimensional coordinate system, then Morse and Feshbach (1953, pp. 509-510) show that

 (h_1h_2h_3)/(h_n^2)=f_n(u_n)g_n(u_i,u_j),
(3)

where i!=j!=n. The Laplacian is therefore of the form

 del ^2=1/(h_1h_2h_3){g_1(u_2,u_3)partial/(partialu_1)[f_1(u_1)partial/(partialu_1)]+g_2(u_1,u_3)partial/(partialu_2)[f_2(u_2)partial/(partialu_2)]+g_3(u_1,u_2)partial/(partialu_3)[f_3(u_3)partial/(partialu_3)]},
(4)

which simplifies to

 del ^2=1/(h_1^2f_1)partial/(partialu_1)[f_1(u_1)partial/(partialu_1)]+1/(h_2^2f_2)partial/(partialu_2)[f_2(u_2)partial/(partialu_2)]+1/(h_3^2f_3)partial/(partialu_3)[f_3(u_3)partial/(partialu_3)].
(5)

Such a coordinate system obeys the Robertson condition, which means that the Stäckel determinant is of the form

 S=(h_1h_2h_3)/(f_1(u_1)f_2(u_2)f_3(u_3)).
(6)

See also

Laplace's Equation, Poisson's Equation, Separation of Variables, Spherical Bessel Differential Equation, Stäckel Determinant

Explore with Wolfram|Alpha

References

Eisenhart, L. P. "Separable Systems in Euclidean 3-Space." Physical Review 45, 427-428, 1934a.Eisenhart, L. P. "Separable Systems of Stäckel." Ann. Math. 35, 284-305, 1934b.Eisenhart, L. P. "Potentials for Which Schroedinger Equations Are Separable." Phys. Rev. 74, 87-89, 1948.Kriezis, E. E.; Tsiboukis, T. D.; Panas, S. M.; and Tegopoulos, J. A. "Eddy Currents:theory and Applications,." Proc. IEEE 80, 1559-1589, 1992.Moon, P. and Spencer, D. E. "Eleven Coordinate Systems" and "The Vector Helmholtz Equation." §1 and 5 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 1-48 and 136-143, 1988.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 125-126, 271, and 509-510, 1953.Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, p. 417, 1995.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 129, 1997.

Referenced on Wolfram|Alpha

Helmholtz Differential Equation

Cite this as:

Weisstein, Eric W. "Helmholtz Differential Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HelmholtzDifferentialEquation.html

Subject classifications