Spherical Coordinates

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld Classroom SphericalCoordinates

Spherical coordinates, also called spherical polar coordinates (Walton 1967, Arfken 1985), are a system of curvilinear coordinates that are natural for describing positions on a sphere or spheroid. Define theta to be the azimuthal angle in the xy-plane from the x-axis with 0<=theta<2pi (denoted lambda when referred to as the longitude), phi to be the polar angle (also known as the zenith angle and colatitude, with phi=90 degrees-delta where delta is the latitude) from the positive z-axis with 0<=phi<=pi, and r to be distance (radius) from a point to the origin. This is the convention commonly used in mathematics.

In this work, following the mathematics convention, the symbols for the radial, azimuth, and zenith angle coordinates are taken as r, theta, and phi, respectively. Note that this definition provides a logical extension of the usual polar coordinates notation, with theta remaining the angle in the xy-plane and phi becoming the angle out of that plane. The sole exception to this convention in this work is in spherical harmonics, where the convention used in the physics literature is retained (resulting, it is hoped, in a bit less confusion than a foolish rigorous consistency might engender).

Unfortunately, the convention in which the symbols theta and phi are reversed (both in meaning and in order listed) is also frequently used, especially in physics. This is especially confusing since the identical notation (r,theta,phi) typically means (radial, azimuthal, polar) to a mathematician but (radial, polar, azimuthal) to a physicist. The symbol rho is sometimes also used in place of r, theta instead of theta, and phi and psi instead of phi. The following table summarizes a number of conventions used by various authors. Extreme care is therefore needed when consulting the literature.

ordernotationreference
(radial, azimuthal, polar)(r,theta,phi)this work
(radial, azimuthal, polar)(rho,theta,phi)Apostol (1969, p. 95), Anton (1984, p. 859), Beyer (1987, p. 212)
(radial, polar, azimuthal)(r,theta,phi)ISO 31-11, Misner et al. (1973, p. 205)
(radial, polar, azimuthal)(r,theta,phi)Arfken (1985, p. 102)
(radial, polar, azimuthal)(r,theta,psi)Moon and Spencer (1988, p. 24)
(radial, polar, azimuthal)(r,theta,phi)Korn and Korn (1968, p. 60), Bronshtein et al. (2004, pp. 209-210)
(radial, polar, azimuthal)(rho,phi,theta)Zwillinger (1996, pp. 297-299)

The spherical coordinates (r,theta,phi) are related to the Cartesian coordinates (x,y,z) by

r=sqrt(x^2+y^2+z^2)
(1)
theta=tan^(-1)(y/x)
(2)
phi=cos^(-1)(z/r),
(3)

where r in [0,infty), theta in [0,2pi), and phi in [0,pi], and the inverse tangent must be suitably defined to take the correct quadrant of (x,y) into account.

In terms of Cartesian coordinates,

x=rcosthetasinphi
(4)
y=rsinthetasinphi
(5)
z=rcosphi.
(6)

The scale factors are

h_r=1
(7)
h_theta=rsinphi
(8)
h_phi=r,
(9)

so the metric coefficients are

g_(rr)=1
(10)
g_(thetatheta)=r^2sin^2phi
(11)
g_(phiphi)=r^2.
(12)

The line element is

 ds=drr^^+rdphiphi^^+rsinphidthetatheta^^,
(13)

the area element

 da=r^2sinphidthetadphi,
(14)

and the volume element

 dV=r^2sinphidphidthetadr.
(15)

The Jacobian is

 |(partial(x,y,z))/(partial(r,theta,phi))|=r^2sinphi.
(16)

The radius vector is

 r=[rcosthetasinphi; rsinthetasinphi; rcosphi],
(17)

so the unit vectors are

r^^=((dr)/(dr))/(|(dr)/(dr)|)
(18)
=[costhetasinphi; sinthetasinphi; cosphi]
(19)
theta^^=((dr)/(dtheta))/(|(dr)/(dtheta)|)
(20)
=[-sintheta; costheta; 0]
(21)
phi^^=((dr)/(dphi))/(|(dr)/(dphi)|)
(22)
=[costhetacosphi; sinthetacosphi; -sinphi].
(23)

Derivatives of the unit vectors are

(partialr^^)/(partialr)=0
(24)
(partialtheta^^)/(partialr)=0
(25)
(partialphi^^)/(partialr)=0
(26)
(partialr^^)/(partialtheta)=sinphitheta^^
(27)
(partialtheta^^)/(partialtheta)=-cosphiphi^^-sinphir^^
(28)
(partialphi^^)/(partialtheta)=cosphitheta^^
(29)
(partialr^^)/(partialphi)=phi^^
(30)
(partialtheta^^)/(partialphi)=0
(31)
(partialphi^^)/(partialphi)=-r^^.
(32)

The gradient is

 del =r^^partial/(partialr)+1/rphi^^partial/(partialphi)+1/(rsinphi)theta^^partial/(partialtheta),
(33)

and its components are

del _rr^^=0
(34)
del _thetar^^=1/rtheta^^
(35)
del _phir^^=1/rphi^^
(36)
del _rtheta^^=0
(37)
del _thetatheta^^=-(cotphi)/rphi^^-1/rr^^
(38)
del _phitheta^^=0
(39)
del _rphi^^=0
(40)
del _thetaphi^^=1/rcotphitheta^^
(41)
del _phiphi^^=-1/rr^^
(42)

(Misner et al. 1973, p. 213, who however use the notation convention (r,phi,theta)).

The Christoffel symbols of the second kind in the definition of Misner et al. (1973, p. 209) are given by

Gamma^r=[0 0 0; 0 -1/r 0; 0 0 -1/r]
(43)
Gamma^theta=[0 1/r 0; 0 0 0; 0 (cotphi)/r 0]
(44)
Gamma^phi=[0 0 1/r; 0 -(cotphi)/r 0; 0 0 0]
(45)

(Misner et al. 1973, p. 213, who however use the notation convention (r,phi,theta)). The Christoffel symbols of the second kind in the definition of Arfken (1985) are given by

Gamma^r=[0 0 0; 0 -rsin^2phi 0; 0 0 -r]
(46)
Gamma^theta=[0 1/r 0; 1/r 0 cotphi; 0 cotphi 0]
(47)
Gamma^phi=[0 0 1/r; 0 -sinphicosphi 0; 1/r 0 0]
(48)

(Walton 1967; Moon and Spencer 1988, p. 25a; both of whom however use the notation convention (r,phi,theta)).

The divergence is

 del ·F=partial/(partialr)A^r+2/rA^r+1/(rsinphi)partial/(partialtheta)A^theta+1/rpartial/(partialphi)A^phi+(cotphi)/rA^phi,
(49)

or, in vector notation,

del ·F=(2/r+partial/(partialr))F_r+(1/rpartial/(partialphi)+(cotphi)/r)F_phi+1/(rsinphi)(partialF_theta)/(partialtheta)
(50)
=1/(r^2)partial/(partialr)(r^2F_r)+1/(rsinphi)partial/(partialphi)(sinphiF_phi)+1/(rsinphi)(partialF_theta)/(partialtheta).
(51)

The covariant derivatives are given by

 A_(j;k)=1/(g_(kk))(partialA_j)/(partialx_k)-Gamma_(jk)^iA_i,
(52)

so

A_(r;r)=(partialA_r)/(partialr)
(53)
A_(r;theta)=1/(rsinphi)(partialA_r)/(partialphi)-(A_theta)/r
(54)
A_(r;phi)=1/r((partialA_r)/(partialphi)-A_phi)
(55)
A_(theta;r)=(partialA_theta)/(partialr)
(56)
A_(theta;theta)=1/(rsinphi)(partialA_theta)/(partialtheta)+(cotphi)/rA_phi+(A_r)/r
(57)
A_(theta;phi)=1/r(partialA_theta)/(partialr)-Gamma_(phir)^iA_i(partialA_theta)/(partialphi)
(58)
A_(phi;r)=(partialA_phi)/(partialr)-Gamma_(phir)^iA_i=(partialA_phi)/r
(59)
A_(phi;theta)=1/(rsinphi)(partialA_phi)/(partialtheta)-(cotphi)/rA_theta
(60)
A_(phi;phi)=1/r(partialA_phi)/(partialphi)+(A_r)/r.
(61)

The commutation coefficients are given by

 c_(alphabeta)^mue^->_mu=[e^->_alpha,e^->_beta]=del _alphae^->_beta-del _betae^->_alpha
(62)
 [r^^,r^^]=[theta^^,theta^^]=[phi^^,phi^^]=0,
(63)

so c_(rr)^alpha=c_(thetatheta)^alpha=c_(phiphi)^alpha=0, where alpha=r,theta,phi.

 [r^^,theta^^]=-[theta^^,r^^]=del _rtheta^^-del _thetar^^=0-1/rtheta^^=-1/rtheta^^,
(64)

so c_(rtheta)^theta=-c_(thetar)^theta=-1/r, c_(rtheta)^r=c_(rtheta)^phi=0.

 [r^^,phi^^]=-[phi^^,r^^]=0-1/rphi^^=-1/rphi^^,
(65)

so c_(rphi)^phi=-c_(phir)^phi=1/r.

 [theta^^,phi^^]=-[phi^^,theta^^]=1/rcotphitheta^^-0=1/rcotphitheta^^,
(66)

so

 c_(thetaphi)^theta=-c_(phitheta)^theta=1/rcotphi.
(67)

Summarizing,

c^r=[0 0 0; 0 0 0; 0 0 0]
(68)
c^theta=[0 -1/r 0; 1/r 0 1/rcotphi; 0 -1/rcotphi 0]
(69)
c^phi=[0 0 -1/r; 0 0 0; 1/r 0 0].
(70)

Time derivatives of the radius vector are

r^.=[costhetasinphir^.-rsinthetasinphitheta^.+rcosthetacosphiphi^.; sinthetasinphir^.+rcosthetasinphitheta^.+rsinthetacosphiphi^.; cosphir^.-rsinphiphi^.]
(71)
=[costhetasinphi; sinthetasinphi; cosphi]r^.+rsinphi[-sintheta; costheta; 0]theta^.+r[costhetacosphi; sinthetacosphi; -sinphi]phi^.
(72)
=r^.r^^+rsinphitheta^.theta^^+rphi^.phi^^.
(73)

The speed is therefore given by

 v=|r^.|=sqrt(r^.^2+r^2sin^2phitheta^.^2+r^2phi^.^2).
(74)

The acceleration is

x^..=(-sinthetasinphitheta^.r^.+costhetacosphir^.phi^.+costhetasinphir^..)-(sinthetasinphir^.theta^.+rcosthetasinphitheta^.^2+rsinthetacosphitheta^.phi^.+rsinthetasinphitheta^..)+(costhetacosphir^.phi^.-rsinthetacostheta^.phi^.-rcosthetasinphiphi^.^2+rcosthetacosphiphi^..)
(75)
=-2sinthetasinphitheta^.r^.+2costhetacosphir^.phi^.-2rsinthetacosphitheta^.phi^.+costhetasinphir^..-rsinthetasinphitheta^..+rcosthetacosphiphi^..-rcosthetasinphi(theta^.^2+phi^.^2)
(76)
y^..=(sinthetasinphir^..+rcosthetasinphitheta^.+rcosphisinthetaphi^.)+(costhetasinphir^.theta^.-rsinthetasinphitheta^.^2+rcosthetacosphitheta^.phi^.+rcosthetasinphitheta^..)+(sinthetacosphir^.phi^.+rcosthetacosphitheta^.phi^.-rsinthetasinphiphi^.^2+rsinthetacosphiphi^..)
(77)
=2costhetasinphitheta^.r^.+2sinthetacosphir^.phi^.+2rcosthetacosphitheta^.phi^.+sinthetasinphir^..+rcosthetasinphitheta^..+rsinthetacosphiphi^..-rsinthetasinphi(theta^.^2+phi^.^2)
(78)
z^..=(cosphir^..-sinphir^.phi^.)-(r^.sinphiphi^.+rcosphiphi^.^2+rsinphiphi^..)
(79)
=-rcosphiphi^.^2+cosphir^..-2sinphiphi^.r^.-rsinphiphi^...
(80)

Plugging these in gives

r^..=(r^..-rphi^.^2)[costhetasinphi; sinthetasinphi; cosphi]+(2rcosphitheta^.phi^.+2sinphitheta^.r^.+rsinphitheta^..)[-sintheta; costheta; 0]+(2r^.phi^.+rphi^..)[costhetacosphi; sinthetacosphi; -sinphi]-rsinphitheta^.^2[costheta; sintheta; 0],
(81)

but

sinphir^^+cosphiphi^^=[costhetasin^2phi+costhetacos^2phi; sinthetasin^2phi+sinthetacos^2phi; 0]
(82)
=[costheta; sintheta; 0],
(83)

so

r^..=(r^..-rphi^.^2)r^^+(2rcosphitheta^.phi^.+2sinphitheta^.r^.+rsinphitheta^..)theta^^+(2r^.phi^.+rphi^..)phi^^-rsinphitheta^.^2(sinphir^^+cosphiphi^^)
(84)
=(r^..-rphi^.^2-rsin^2phitheta^.^2)r^^+(2sinphitheta^.r^.+2rcosphitheta^.phi^.+rsinphitheta^..)theta^^+(2r^.phi^.+rphi^..-rsinphicosphitheta^.^2)phi^^.
(85)

Time derivatives of the unit vectors are

r^^^.=sinphitheta^.theta^^+phi^.phi^^
(86)
theta^^^.=-theta^.(sinphir^^+cosphiphi^^)
(87)
phi^^^.=-phi^.r^^+cosphitheta^.theta^^.
(88)

The curl is

 del ×F=1/(rsinphi)[partial/(partialphi)(sinphiF_theta)-(partialF_phi)/(partialtheta)]r^^+1/r[1/(sinphi)(partialF_r)/(partialtheta)-partial/(partialr)(rF_theta)]phi^^+1/r[partial/(partialr)(rF_phi)-(partialF_r)/(partialphi)]theta^^.
(89)

The Laplacian is

del ^2=1/(r^2)partial/(partialr)(r^2partial/(partialr))+1/(r^2sin^2phi)(partial^2)/(partialtheta^2)+1/(r^2sinphi)partial/(partialphi)(sinphipartial/(partialphi))
(90)
=1/(r^2)(r^2(partial^2)/(partialr^2)+2rpartial/(partialr))+1/(r^2sin^2phi)(partial^2)/(partialtheta^2)+1/(r^2sinphi)(cosphipartial/(partialphi)+sinphi(partial^2)/(partialphi^2))
(91)
=(partial^2)/(partialr^2)+2/rpartial/(partialr)+1/(r^2sin^2phi)(partial^2)/(partialtheta^2)+(cosphi)/(r^2sinphi)partial/(partialphi)+1/(r^2)(partial^2)/(partialphi^2).
(92)

The vector Laplacian in spherical coordinates is given by

 del ^2v=[1/r(partial^2(rv_r))/(partialr^2)+1/(r^2)(partial^2v_r)/(partialtheta^2)+1/(r^2sin^2theta)(partial^2v_r)/(partialphi^2)+(cottheta)/(r^2)(partialv_r)/(partialtheta)-2/(r^2)(partialv_theta)/(partialtheta)-2/(r^2sintheta)(partialv_phi)/(partialphi)-(2v_r)/(r^2)-(2cottheta)/(r^2)v_theta 
1/r(partial^2(rv_(theta)))/(partialr^2)+1/(r^2)(partial^2v_(theta))/(partialtheta^2)+1/(r^2sin^2theta)(partial^2v_(theta))/(partialphi^2)+(cottheta)/(r^2)(partialv_(theta))/(partialtheta)-2/(r^2)(cottheta)/(sintheta)(partialv_(phi))/(partialphi)+2/(r^2)(partialv_r)/(partialtheta)-(v_(theta))/(r^2sin^2theta) 
1/r(partial^2(rv_(phi)))/(partialr^2)+1/(r^2)(partial^2v_(phi))/(partialtheta^2)+1/(r^2sin^2theta)(partial^2v_(phi))/(partialphi^2)+(cottheta)/(r^2)(partialv_(phi))/(partialtheta)+2/(r^2sintheta)(partialv_r)/(partialphi)+(2cottheta)/(r^2sintheta)(partialv_(theta))/(partialphi)-(v_(phi))/(r^2sin^2theta) ].
(93)

To express partial derivatives with respect to Cartesian axes in terms of partial derivatives of the spherical coordinates,

[x; y; z]=[rcosthetasinphi; rsinthetasinphi; rcosphi]
(94)
[dx; dy; dz]=[costhetasinphidr-rsinthetasinphidtheta+rcosthetacosphidphi; sinthetasinphidr+rsinphicosthetadtheta+rsinthetacosphidphi; cosphidr-rsinphidphi]
(95)
=[costhetasinphi -rsinthetasinphi rcosthetacosphi; sinthetasinphi rcosthetasinphi rsinthetacosphi; cosphi 0 -rsinphi][dr; dtheta; dphi].
(96)

Upon inversion, the result is

 [dr; dtheta; dphi]=[costhetasinphi sinthetasinphi cosphi; -(sintheta)/(rsinphi) (costheta)/(rsinphi) 0; (costhetacosphi)/r (sinthetacosphi)/r -(sinphi)/r][dx; dy; dz].
(97)

The Cartesian partial derivatives in spherical coordinates are therefore

partial/(partialx)=costhetasinphipartial/(partialr)-(sintheta)/(rsinphi)partial/(partialtheta)+(costhetacosphi)/rpartial/(partialphi)
(98)
partial/(partialy)=sinthetasinphipartial/(partialr)+(costheta)/(rsinphi)partial/(partialtheta)+(sinthetacosphi)/rpartial/(partialphi)
(99)
partial/(partialz)=cosphipartial/(partialr)-(sinphi)/rpartial/(partialphi)
(100)

(Gasiorowicz 1974, pp. 167-168; Arfken 1985, p. 108).

The Helmholtz differential equation is separable in spherical coordinates.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.