Spherical Harmonic

DOWNLOAD Mathematica Notebook

The spherical harmonics Y_l^m(theta,phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present. Some care must be taken in identifying the notational convention being used. In this entry, theta is taken as the polar (colatitudinal) coordinate with theta in [0,pi], and phi as the azimuthal (longitudinal) coordinate with phi in [0,2pi). This is the convention normally used in physics, as described by Arfken (1985) and the Wolfram Language (in mathematical literature, theta usually denotes the longitudinal coordinate and phi the colatitudinal coordinate). Spherical harmonics are implemented in the Wolfram Language as SphericalHarmonicY[l, m, theta, phi].

Spherical harmonics satisfy the spherical harmonic differential equation, which is given by the angular part of Laplace's equation in spherical coordinates. Writing F=Phi(phi)Theta(theta) in this equation gives

 (Phi(phi))/(sintheta)d/(dtheta)(sintheta(dTheta)/(dtheta))+(Theta(theta))/(sin^2theta)(d^2Phi(phi))/(dphi^2)+l(l+1)Theta(theta)Phi(phi)=0.
(1)

Multiplying by sin^2theta/(ThetaPhi) gives

 [(sintheta)/(Theta(theta))d/(dtheta)(sintheta(dTheta)/(dtheta))+l(l+1)sin^2theta]+1/(Phi(phi))(d^2Phi(phi))/(dphi^2)=0.
(2)

Using separation of variables by equating the phi-dependent portion to a constant gives

 1/(Phi(phi))(d^2Phi(phi))/(dphi^2)=-m^2,
(3)

which has solutions

 Phi(phi)=Ae^(-imphi)+Be^(imphi).
(4)

Plugging in (3) into (2) gives the equation for the theta-dependent portion, whose solution is

 Theta(theta)=P_l^m(costheta),
(5)

where m=-l, -(l-1), ..., 0, ..., l-1, l and P_l^m(z) is an associated Legendre polynomial. The spherical harmonics are then defined by combining Phi(phi) and Theta(theta),

 Y_l^m(theta,phi)=sqrt((2l+1)/(4pi)((l-m)!)/((l+m)!))P_l^m(costheta)e^(imphi),
(6)

where the normalization is chosen such that

 int_0^(2pi)int_0^piY_l^m(theta,phi)Y^__(l^')^(m^')(theta,phi)sinthetadthetadphi 
=int_0^(2pi)int_(-1)^1Y_l^m(theta,phi)Y^__(l^')^(m^')(theta,phi)d(costheta)dphi 
=delta_(mm^')delta_(ll^')
(7)

(Arfken 1985, p. 681). Here, z^_ denotes the complex conjugate and delta_(mn) is the Kronecker delta. Sometimes (e.g., Arfken 1985), the Condon-Shortley phase (-1)^m is prepended to the definition of the spherical harmonics.

The spherical harmonics are sometimes separated into their real and imaginary parts,

 Y_l^m^s(theta,phi)=sqrt((2l+1)/(4pi)((l-m)!)/((l+m)!))P_l^m(costheta)sin(mphi)
(8)
 Y_l^m^c(theta,phi)=sqrt((2l+1)/(4pi)((l-m)!)/((l+m)!))P_l^m(costheta)cos(mphi).
(9)

The spherical harmonics obey

Y_l^(-l)(theta,phi)=1/(2^ll!)sqrt(((2l+1)!)/(4pi))sin^lthetae^(-ilphi)
(10)
Y_l^0(theta,phi)=sqrt((2l+1)/(4pi))P_l(costheta)
(11)
Y_l^(-m)(theta,phi)=(-1)^mY^__l^m(theta,phi),
(12)

where P_l(x) is a Legendre polynomial.

Integrals of the spherical harmonics are given by

 int_0^(2pi)int_0^piY_(l_1)^(m_1)(theta,phi)Y_(l_2)^(m_2)(theta,phi)Y_(l_3)^(m_3)(theta,phi)sinthetadthetadphi 
 =sqrt(((2l_1+1)(2l_2+1)(2l_3+1))/(4pi))(l_1 l_2 l_3; 0 0 0)(l_1 l_2 l_3; m_1 m_2 m_3),
(13)

where (l_1 l_2 l_3; m_1 m_2 m_3) is a Wigner 3j-symbol (which is related to the Clebsch-Gordan coefficients). Special cases include

int_0^(2pi)int_0^piY_L^M(theta,phi)Y_0^0(theta,phi)Y^__L^M(theta,phi)sinthetadthetadphi=1/(sqrt(4pi))
(14)
int_0^(2pi)int_0^piY_L^M(theta,phi)Y_1^0(theta,phi)Y^__(L+1)^M(theta,phi)sinthetadthetadphi=sqrt(3/(4pi))sqrt(((L+M+1)(L-M+1))/((2L+1)(2L+3)))
(15)
int_0^(2pi)int_0^piY_L^M(theta,phi)Y_1^1(theta,phi)Y^__(L+1)^(M+1)(theta,phi)sinthetadthetadphi=sqrt(3/(8pi))sqrt(((L+M+1)(L+M+2))/((2L+1)(2L+3)))
(16)
int_0^(2pi)int_0^piY_L^M(theta,phi)Y_1^1(theta,phi)Y^__(L-1)^(M+1)(theta,phi)sinthetadthetadphi=-sqrt(3/(8pi))sqrt(((L-M)(L-M-1))/((2L-1)(2L+1)))
(17)

(Arfken 1985, p. 700).

SphericalHarmonicsSphericalHarmonicsReIm

The above illustrations show |Y_l^m(theta,phi)|^2 (top), R[Y_l^m(theta,phi)]^2 (bottom left), and I[Y_l^m(theta,phi)]^2 (bottom right). The first few spherical harmonics are

Y_0^0(theta,phi)=1/21/(sqrt(pi))
(18)
Y_1^(-1)(theta,phi)=1/2sqrt(3/(2pi))sinthetae^(-iphi)
(19)
Y_1^0(theta,phi)=1/2sqrt(3/pi)costheta
(20)
Y_1^1(theta,phi)=-1/2sqrt(3/(2pi))sinthetae^(iphi)
(21)
Y_2^(-2)(theta,phi)=1/4sqrt((15)/(2pi))sin^2thetae^(-2iphi)
(22)
Y_2^(-1)(theta,phi)=1/2sqrt((15)/(2pi))sinthetacosthetae^(-iphi)
(23)
Y_2^0(theta,phi)=1/4sqrt(5/pi)(3cos^2theta-1)
(24)
Y_2^1(theta,phi)=-1/2sqrt((15)/(2pi))sinthetacosthetae^(iphi)
(25)
Y_2^2(theta,phi)=1/4sqrt((15)/(2pi))sin^2thetae^(2iphi)
(26)
Y_3^(-3)(theta,phi)=1/8sqrt((35)/pi)sin^3thetae^(-3iphi)
(27)
Y_3^(-2)(theta,phi)=1/4sqrt((105)/(2pi))sin^2thetacosthetae^(-2iphi)
(28)
Y_3^(-1)(theta,phi)=1/8sqrt((21)/pi)sintheta(5cos^2theta-1)e^(-iphi)
(29)
Y_3^0(theta,phi)=1/4sqrt(7/pi)(5cos^3theta-3costheta)
(30)
Y_3^1(theta,phi)=-1/8sqrt((21)/pi)sintheta(5cos^2theta-1)e^(iphi)
(31)
Y_3^2(theta,phi)=1/4sqrt((105)/(2pi))sin^2thetacosthetae^(2iphi)
(32)
Y_3^3(theta,phi)=-1/8sqrt((35)/pi)sin^3thetae^(3iphi).
(33)

Written in terms of Cartesian coordinates,

e^(iphi)=(x+iy)/(sqrt(x^2+y^2))
(34)
theta=sin^(-1)(sqrt((x^2+y^2)/(x^2+y^2+z^2)))
(35)
=cos^(-1)(z/(sqrt(x^2+y^2+z^2))),
(36)

so

Y_0^0(theta,phi)=1/21/(sqrt(pi))
(37)
Y_1^0(theta,phi)=1/2sqrt(3/pi)z/(sqrt(x^2+y^2+z^2))
(38)
Y_1^1(theta,phi)=-1/2sqrt(3/(2pi))(x+iy)/(sqrt(x^2+y^2+z^2))
(39)
Y_2^0(theta,phi)=1/4sqrt(5/pi)((3z^2)/(x^2+y^2+z^2)-1)
(40)
Y_2^1(theta,phi)=-1/2sqrt((15)/(2pi))(z(x+iy))/(x^2+y^2+z^2)
(41)
Y_2^2(theta,phi)=1/4sqrt((15)/(2pi))((x+iy)^2)/(x^2+y^2+z^2).
(42)

The zonal harmonics are defined to be those of the form

 P_l^0(costheta)=P_l(costheta).
(43)

The tesseral harmonics are those of the form

 sin(mphi)P_l^m(costheta)
(44)
 cos(mphi)P_l^m(costheta)
(45)

for l!=m. The sectorial harmonics are of the form

 sin(mphi)P_m^m(costheta)
(46)
 cos(mphi)P_m^m(costheta).
(47)

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.