Search Results for ""
7331 - 7340 of 13135 for www.bong88.com login %...Search Results

The integral transform (Kf)(x)=int_0^inftysqrt(xt)K_nu(xt)f(t)dt, where K_nu(x) is a modified Bessel function of the second kind. Note the lower limit of 0, not -infty as ...
A modification of Legendre's formula for the prime counting function pi(x). It starts with |_x_| = (1) where |_x_| is the floor function, P_2(x,a) is the number of integers ...
Meißner (1911) showed how to modify the Reuleaux tetrahedron (which is not a solid of constant width) to form a surface of constant width by replacing three of its edge arcs ...
The hypergeometric orthogonal polynomials defined by P_n^((lambda))(x;phi)=((2lambda)_n)/(n!)e^(inphi)_2F_1(-n,lambda+ix;2lambda;1-e^(-2iphi)), (1) where (x)_n is the ...
Polynomials m_k(x;beta,c) which form the Sheffer sequence for g(t) = ((1-c)/(1-ce^t))^beta (1) f(t) = (1-e^t)/(c^(-1)-e^t) (2) and have generating function ...
The polynomials M_k(x;delta,eta) which form the Sheffer sequence for g(t) = {[1+deltaf(t)]^2+[f(t)]^2}^(eta/2) (1) f(t) = tan(t/(1+deltat)) (2) which have generating function ...
A type of integral containing gamma functions in its integrand. A typical such integral is given by ...
The Mellin transform is the integral transform defined by phi(z) = int_0^inftyt^(z-1)f(t)dt (1) f(t) = 1/(2pii)int_(c-iinfty)^(c+iinfty)t^(-z)phi(z)dz. (2) It is implemented ...
(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y))=product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x)), where psi_0(x) is the digamma function and Gamma(x) is the gamma function.
A_m(lambda)=int_(-infty)^inftycos[1/2mphi(t)-lambdat]dt, (1) where the function phi(t)=4tan^(-1)(e^t)-pi (2) describes the motion along the pendulum separatrix. Chirikov ...

...