TOPICS
Search

Mellin-Barnes Integral


A type of integral containing gamma functions in its integrand. A typical such integral is given by

 f(z)=1/(2pii)int_(gamma-iinfty)^(gamma+iinfty)(Gamma(a_1+A_1s)...Gamma(a_n+A_ns))/(Gamma(c_1+C_1s)...Gamma(c_p+C_ps)) 
 ×(Gamma(b_1-B_1s)...Gamma(b_n-B_ns))/(Gamma(d_1-D_1s)...Gamma(d_q-D_qs))z^sds,

where gamma is real, A_j, B_j, C_j, and D_j are positive, and the contour is a straight line parallel to the imaginary axis with indentations if necessary to avoid poles of the integrand.


Explore with Wolfram|Alpha

References

Barnes, E. W. "A New Development in the Theory of the Hypergeometric Functions." Proc. London Math. Soc. 6, 141-177, 1908.Dixon, A. L. and Ferrar, W. L. "A Class of Discontinuous Integrals." Quart. J. Math. (Oxford Ser.) 7, 81-96, 1936.Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. "Mellin-Barnes Integrals." §1.19 in Higher Transcendental Functions, Vol. 1. New York: Krieger, pp. 49-50, 1981.Mellin, H. "Om Definita Integraler." Acta Societatis Scientiarum Fennicae 20, No. 7, 1-39, 1895.Mellin, H. "Abrißeiner einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen." Math. Ann. 68, 305-337, 1909.Paris, R. B. and Kaminski, D. Asymptotics and Mellin-Barnes Integrals. Cambridge, England: Cambridge University Press, 2001.Pincherle, S. Atti d. R. Academia dei Lincei, Ser. 4, Rendiconti 4, 694-700 and 792-799, 1888.Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., p. 216, 2000.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 289, 1990.

Referenced on Wolfram|Alpha

Mellin-Barnes Integral

Cite this as:

Weisstein, Eric W. "Mellin-Barnes Integral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Mellin-BarnesIntegral.html

Subject classifications