Search Results for ""
11731 - 11740 of 13135 for visualized mathematicsSearch Results
Using the notation of Byerly (1959, pp. 252-253), Laplace's equation can be reduced to (1) where alpha = cint_c^lambda(dlambda)/(sqrt((lambda^2-b^2)(lambda^2-c^2))) (2) = ...
In spherical coordinates, the scale factors are h_r=1, h_theta=rsinphi, h_phi=r, and the separation functions are f_1(r)=r^2, f_2(theta)=1, f_3(phi)=sinphi, giving a Stäckel ...
The lattice method is an alternative to long multiplication for numbers. In this approach, a lattice is first constructed, sized to fit the numbers being multiplied. If we ...
Cubic lattice sums include the following: b_2(2s) = sum^'_(i,j=-infty)^infty((-1)^(i+j))/((i^2+j^2)^s) (1) b_3(2s) = ...
Lauricella functions are generalizations of the Gauss hypergeometric functions to multiple variables. Four such generalizations were investigated by Lauricella (1893), and ...
Let a, b, and c be the lengths of the legs of a triangle opposite angles A, B, and C. Then the law of cosines states a^2 = b^2+c^2-2bccosA (1) b^2 = a^2+c^2-2accosB (2) c^2 = ...
In functional analysis, the Lax-Milgram theorem is a sort of representation theorem for bounded linear functionals on a Hilbert space H. The result is of tantamount ...
Let L_n be the n×n matrix whose (i,j)th entry is 1 if j divides i and 0 otherwise, let Phi_n be the n×n diagonal matrix diag(phi(1),phi(2),...,phi(n)), where phi(n) is the ...
Let n>1 be any integer and let lpf(n) (also denoted LD(n)) be the least integer greater than 1 that divides n, i.e., the number p_1 in the factorization ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
...
View search results from all Wolfram sites (61339 matches)

