Let
be the
matrix whose th
entry is 1 if
divides
and 0 otherwise, let
be the diagonal matrix, where is the totient function,
and let
be the
matrix whose th
entry is the greatest common divisor. Then Le Paige's theorem states
that
where
denotes the transpose (Le Paige 1878, Johnson 2003).
As a corollary,
(Smith 1876, Johnson 2003). For , 2, ... the first few values are 1, 1, 2, 4, 16, 32, 192,
768, ... (OEIS A001088).
Johnson, W. P. "An Factorization in Elementary Number Theory." Math.
Mag.76, 392-394, 2003.Le Paige, C. "Sur un théorème
de M. Mansion." Nouv. Corresp. Math.4, 176-178, 1878.Mansion,
P. "On an Arithmetical Theorem of Professor Smith's." Messenger Math.7,
81-82, 1877.Muir, T. A
Treatise on the Theory of Determinants, Vol. 3. New York: Dover, 1960.Sloane,
N. J. A. Sequence A001088 in "The
On-Line Encyclopedia of Integer Sequences."Smith, H. J. S.
"On the Value of a Certain Arithmetical Determinant." Proc. London Math.
Soc.7, 208-212, 1876. Reprinted in The Collected Mathematical Papers
of Henry John Stephen Smith, Vol. 2 (Ed. J. W. L. Glaisher).
Oxford, England: Clarendon Press, pp. 161-165, 1894.