Search Results for ""
921 - 930 of 1489 for vector productSearch Results
Let T(m) denote the set of the phi(m) numbers less than and relatively prime to m, where phi(n) is the totient function. Define f_m(x)=product_(t in T(m))(x-t). (1) Then a ...
Use the definition of the q-series (a;q)_n=product_(j=0)^(n-1)(1-aq^j) (1) and define [N; M]=((q^(N-M+1);q)_M)/((q;q)_m). (2) Then P. Borwein has conjectured that (1) the ...
The nth central fibonomial coefficient is defined as [2n; n]_F = product_(k=1)^(n)(F_(n+k))/(F_k) (1) = ...
The two functions theta(x) and psi(x) defined below are known as the Chebyshev functions. The function theta(x) is defined by theta(x) = sum_(k=1)^(pi(x))lnp_k (1) = ...
Euclid's second theorem states that the number of primes is infinite. The proof of this can be accomplished using the numbers E_n = 1+product_(i=1)^(n)p_i (1) = 1+p_n#, (2) ...
The term "Euler function" may be used to refer to any of several functions in number theory and the theory of special functions, including 1. the totient function phi(n), ...
Euler (1738, 1753) considered the series s_a(x)=sum_(n=1)^infty[1/(1-a^n)product_(k=0)^(n-1)(1-xa^(-k))]. He showed that just like log_a(a^n)=n, s_a(a^n)=n for nonnegative ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
Consider the forms Q for which the generic characters chi_i(Q) are equal to some preassigned array of signs e_i=1 or -1, e_1,e_2,...,e_r, subject to product_(i=1)^(r)e_i=1. ...
The geometric mean of a sequence {a_i}_(i=1)^n is defined by G(a_1,...,a_n)=(product_(i=1)^na_i)^(1/n). (1) Thus, G(a_1,a_2) = sqrt(a_1a_2) (2) G(a_1,a_2,a_3) = ...
...