TOPICS
Search

False Logarithmic Series


FalseLogarithmicSeries

Euler (1738, 1753) considered the series

 s_a(x)=sum_(n=1)^infty[1/(1-a^n)product_(k=0)^(n-1)(1-xa^(-k))].

He showed that just like log_a(a^n)=n, s_a(a^n)=n for nonnegative integers n, though s_a(x) is a different function from log_a(x). s_a(a^x) (red) and log_a(a^x) (blue) for a=2, showing their coincidence at positive integers.

A closed form is given by

 s_a(0)=(psi_(1/a)(1))/(lna)+log_a(a-1)-1,

where psi_q(z) is the q-polygamma function.


See also

Logarithmic Series

Explore with Wolfram|Alpha

References

Euler, L. "Methodus generalis summandi progressiones." Commentarii academiae scientiarum imperialis Petropolitanae 6, pp. 68-97, (1732/33) 1738. Reprinted in Opera omnia I. 14, pp. 42-72.Euler, L. "Consideratio quarundam serierum quae singularibus proprietatibus sunt praeditae." Novi commentarii academiae scientiarum imperialis Petropolitanae 3, 10-12, (1750/51) 1753. Reprinted in Opera omnia I. 14, pp. 516-541.Sandifer, E. "How Euler Did It: A False Logarithmic Series." Dec. 2007. http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2050%20false%20log%20series.pdf.

Referenced on Wolfram|Alpha

False Logarithmic Series

Cite this as:

Weisstein, Eric W. "False Logarithmic Series." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FalseLogarithmicSeries.html

Subject classifications