Search Results for ""
301 - 310 of 778 for time measureSearch Results
Probability is the branch of mathematics that studies the possible outcomes of given events together with the outcomes' relative likelihoods and distributions. In common ...
Let f be a finite real-valued function defined on an interval [a,b]. Then at every point in [a,b] except on a set of Lebesgue measure zero, either: 1. There is a finite ...
Informally, an L^2-function is a function f:X->R that is square integrable, i.e., |f|^2=int_X|f|^2dmu with respect to the measure mu, exists (and is finite), in which case ...
A polar representation of a complex measure mu is analogous to the polar representation of a complex number as z=re^(itheta), where r=|z|, dmu=e^(itheta)d|mu|. (1) The analog ...
A generalization of the Lebesgue integral. A measurable function f(x) is called A-integrable over the closed interval [a,b] if m{x:|f(x)|>n}=O(n^(-1)), (1) where m is the ...
A property of X is said to hold almost everywhere if the set of points in X where this property fails is contained in a set that has measure zero.
Let (X,B,mu) be a measure space and let E be a measurable set with mu(E)<infty. Let {f_n} be a sequence of measurable functions on E such that each f_n is finite almost ...
Euler integration was defined by Schanuel and subsequently explored by Rota, Chen, and Klain. The Euler integral of a function f:R->R (assumed to be piecewise-constant with ...
Let alpha(x) be a monotone increasing function and define an interval I=(x_1,x_2). Then define the nonnegative function U(I)=alpha(x_2)-alpha(x_1). The Lebesgue integral with ...
Suppose that {f_n} is a sequence of measurable functions, that f_n->f pointwise almost everywhere as n->infty, and that |f_n|<=g for all n, where g is integrable. Then f is ...
...